分析 分別求出函數(shù)f(x)的最大值與g(x)的最小值,根據(jù)題意,只需曲線f(x)=$\frac{lnx}{{x}^{n}}$在直線l:y=1的下方,而曲線g(x)=$\frac{{e}^{x}}{{x}^{n}}$,x∈(0,+∞)在直線l:y=1的上方即可.
解答 解:由函數(shù)f(x)=$\frac{lnx}{{x}^{n}}$求導(dǎo),得f′(x)=$\frac{1-nlnx}{{x}^{n+1}}$,
令f′(x)=0,解得x=${e}^{\frac{1}{n}}$.
當(dāng)x變化時(shí),f′(x)與f(x)的變化如下表所示:
x | (0,${e}^{\frac{1}{n}}$) | ${e}^{\frac{1}{n}}$ | (${e}^{\frac{1}{n}}$,+∞) |
f′(x) | + | 0 | - |
f(x) | ↑ | ↓ |
x | (0,n) | n | (n,+∞) |
g′(x) | - | 0 | + |
g(x) | ↓ | ↑ |
點(diǎn)評(píng) 此題考查學(xué)生會(huì)根據(jù)導(dǎo)函數(shù)的正負(fù)得到函數(shù)的單調(diào)區(qū)間,會(huì)根據(jù)函數(shù)的增減性得到函數(shù)的最值,掌握函數(shù)零點(diǎn)的判斷方法,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com