1.已知點(diǎn)A(2,y)B(-3,-2),C(1,1),且$\overrightarrow{AB}$與$\overrightarrow{BC}$垂直.求y的值.

分析 先求出$\overrightarrow{AB}$,$\overrightarrow{BC}$,由$\overrightarrow{AB}$與$\overrightarrow{BC}$垂直,得$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,能求出y的值.

解答 解:∵A(2,y)B(-3,-2),C(1,1),
∴$\overrightarrow{AB}$=(-5,-2-y),$\overrightarrow{BC}$=(4,3),
∵$\overrightarrow{AB}$與$\overrightarrow{BC}$垂直,
∴$\overrightarrow{AB}•\overrightarrow{BC}$=-5×4+(-2-y)×3=0,
解得y=-$\frac{26}{3}$.
∴y的值為-$\frac{26}{3}$.

點(diǎn)評 本題考查滿足條件的實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$f({2^x})=\frac{2}{x}+3(x≠0)$,則f($\frac{1}{2}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知α∈R,關(guān)于x的一元二次不等式2x2-17x+a≤0的解集中有且僅有3個(gè)整數(shù),則實(shí)數(shù)a的取值范圍為(30,33].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)向量$\overrightarrow{a}$=(3,-2),$\overrightarrow$=(-1,2),則向量$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow$的坐標(biāo)是(7,-6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)向量$\overrightarrow{a}$=(2k+2,4),$\overrightarrow$=(8,k+1),若$\overrightarrow{a}$,$\overrightarrow$同向或反向,則k=( 。
A.3B.-5C.0D.3或-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若?x>0,$\frac{ax}{{x}^{2}+1}$≤x-lnx恒成立,則實(shí)數(shù)a的取值范圍是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知圓的半徑為2厘米,分別求5弧度與150°圓心角所對的弧長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.∠A=60°,b=1,△ABC的周長為3+$\sqrt{3}$,則$\frac{a-b+2016c}{sinA-sinB+2016sinC}$=1+$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.用五點(diǎn)法在同一直角坐標(biāo)系中,畫出函數(shù).
y=sinx,x∈[0,2π]
y=cosx,x∈[-$\frac{π}{2}$,$\frac{3π}{2}$].

查看答案和解析>>

同步練習(xí)冊答案