【題目】已知函數(shù),在點處的切線方程為.
(1)求的解析式;
(2)求的單調區(qū)間;
(3)若函數(shù)在定義域內恒有成立,求的取值范圍.
【答案】(1);(2) 的單調增區(qū)間為,單調減區(qū)間為;
(3).
【解析】【試題分析】(1)借助導數(shù)的幾何意義建立方程組求解;(2)先求導再借助導數(shù)與函數(shù)單調性之間的關系求解;(3)先將不等式進行等價轉化,再分離參數(shù)借助導數(shù)知識求其最值,即可得到參數(shù)的范圍。
(1)由題意,得,
則,∵在點處的切線方程為,
∴切線斜率為,則,得,
將代入方程,得,解得,
∴,將代入得,
故.
(2)依題意知函數(shù)的定義域是,且,
令,得,令,得,
故的單調增區(qū)間為,單調減區(qū)間為.
(3)由,得,
∴在定義域內恒成立.
設,則,
令,得.
令,得,令,得,
故在定義域內有極小值,此極小值又為最小值.
∴的最小值為,
所以,即的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】為了監(jiān)控某種零件的一條生產線的生產過程,檢驗員每天從該生產線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產經驗,可以認為這條生產線正常狀態(tài)下生產的零件的尺寸服從正態(tài)分布.
(1)假設生產狀態(tài)正常,記X表示一天內抽取的16個零件中其尺寸在
之外的零件數(shù),求;
(2)一天內抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認為這條生產線在這一天的生產過程可能出現(xiàn)了異常情況,需對當天的生產過程進行檢查.
下面是檢驗員在一天內抽取的16個零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經計算得, ,其中為抽取的第個零件的尺寸, .
用樣本平均數(shù)作為的估計值,用樣本標準差作為的估計值,利用估計值判斷是否需對當天的生產過程進行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計和(精確到0.01).
附:若隨機變量服從正態(tài)分布,則,
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的離心率為,直線: 與以原點為圓心、橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)過橢圓的左頂點作直線,與圓相交于兩點, ,若是鈍角三角形,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,直線的參數(shù)方程為(t為參數(shù)),P、Q分別為直線與x軸、y軸的交點,線段PQ的中點為M.
(Ⅰ)求直線的直角坐標方程;
(Ⅱ)以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標和直線OM的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,橫、縱坐標均為整數(shù)的點叫做格點.若函數(shù)圖象恰好經過k個格點,則稱函數(shù)為k階格點函數(shù).已知函數(shù):
①y=sinx; ②y=cos(x+); ③y=ex-1; ④y=x2.
其中為一階格點函數(shù)的序號為 ( )
A. ①② B. ②③ C. ①③ D. ②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com