(1)已知2f(x)+f(
1
x
)=x,求f(x)的解析式.
(2)已知f(x)為偶函數(shù),g(x)為奇函數(shù),且有f(x)+g(x)=
1
x-1
,求f(x),g(x).
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由2f(x)+f(
1
x
)=x,把
1
x
代替x代入可得2f(
1
x
)+f(x)=
1
x
,聯(lián)立消去f(
1
x
)
j即可得出.
(2)由f(x)為偶函數(shù),g(x)為奇函數(shù),且有f(x)+g(x)=
1
x-1
,可得f(-x)+g(-x)=f(x)-g(x)=
1
-x-1
,聯(lián)立即可解出.
解答: 解:(1)由2f(x)+f(
1
x
)=x,把
1
x
代替x代入可得2f(
1
x
)+f(x)=
1
x
,聯(lián)立消去f(
1
x
)
可得:f(x)=
2
3
x-
1
3x

(2)∵f(x)為偶函數(shù),g(x)為奇函數(shù),且有f(x)+g(x)=
1
x-1
,
∴f(-x)+g(-x)=f(x)-g(x)=
1
-x-1

聯(lián)立解得f(x)=
1
x2-1
,g(x)=
x
x2-1
點(diǎn)評:本題考查了函數(shù)的奇偶性、解析式的求法,考查了推理能力和計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某商品的進(jìn)價(jià)為每件40元,售價(jià)為每件50元,每個(gè)月可賣出210件;如果每件商品的售價(jià)每上漲1元.則每個(gè)月少賣10件(每件售價(jià)不能高于65元).設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷售利潤為y元
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤?最大的月利潤是多少元?
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤恰為2200元?根據(jù)以上結(jié)論,請你直接寫出售價(jià)在什么范圍時(shí),每個(gè)月的利潤不低于2200元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(2x+
π
3

(1)寫出它的振幅、周期和初相;
(2)用五點(diǎn)法作出它的一個(gè)周期的圖象;
(3)說明y=2sin(2x+
π
3
)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換而得到?
(4)求出函數(shù)的單調(diào)增區(qū)間;
(5)求出函數(shù)圖象對稱軸方程和對稱中心坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x2-2ax-1在[0,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)y=f(x)(x∈R)在[0,+∞)為增函數(shù),則滿足不等式f(x)+f(2x+1)>0的x的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列5個(gè)判斷:
①若f(x)=x2-2ax在[1,+∞)上增函數(shù),則a=1;
②函數(shù)f(x)=2x-x2只有兩個(gè)零點(diǎn);
③函數(shù)y=ln(x2+1)的值域是R;
④函數(shù)y=2|x|的最小值是1;
⑤在同一坐標(biāo)系中函數(shù)y=2x與y=2-x的圖象關(guān)于y軸對稱.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-2x+
1
2
(x∈R),g(x)=cosx(x∈[
π
3
,
3
]),若a,b∈R,且有f(a)=g(b),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-1,9,m+6},集合B={9,m2},若B⊆A,則實(shí)數(shù)m=
 

查看答案和解析>>

同步練習(xí)冊答案