【題目】已知,直線不過(guò)原點(diǎn)且不平行于坐標(biāo)軸,與有兩個(gè)交點(diǎn),,線段的中點(diǎn)為.
(1)若,點(diǎn)在橢圓上,、分別為橢圓的兩個(gè)焦點(diǎn),求的范圍;
(2)若過(guò)點(diǎn),射線與橢圓交于點(diǎn),四邊形能否為平行四邊形?若能,求此時(shí)直線斜率;若不能,說(shuō)明理由.
【答案】(1);(2).
【解析】
(1)求得焦點(diǎn)坐標(biāo),設(shè),運(yùn)用向量數(shù)量積的坐標(biāo)表示,結(jié)合橢圓的范圍,可得所求范圍;
(2)設(shè),的坐標(biāo)分別為,,,,運(yùn)用中點(diǎn)坐標(biāo)公式和點(diǎn)差法,直線的斜率公式,結(jié)合平行四邊形的性質(zhì),即可得到所求斜率.
解:(1)時(shí),橢圓,兩個(gè)焦點(diǎn),,,,
設(shè),可得,即,
,,,,
,
因?yàn)?/span>,
所以的范圍是;
(2)設(shè),的坐標(biāo)分別為,,,,可得,,
則,兩式相減可得,
,即,
故,又設(shè),,直線,
即直線的方程為,
從而,代入橢圓方程可得,,
由與,聯(lián)立得,
若四邊形為平行四邊形,那么也是的中點(diǎn),
所以,即,整理可得,
解得,經(jīng)檢驗(yàn)滿(mǎn)足題意,
所以當(dāng)時(shí),四邊形為平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,點(diǎn)分別為線段,上的動(dòng)點(diǎn),且,則以下結(jié)論錯(cuò)誤的是( )
A.平面
B.平面平面
C.,使得平面
D.,使得平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的值域;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某投資人打算投資甲、乙兩個(gè)項(xiàng)目,根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%和50%,可能的最大虧損率分別為30%和10%,投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確保可能的資金虧損不超過(guò)1.8萬(wàn)元,問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬(wàn)元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的圓柱中,AB為圓的直徑,是的兩個(gè)三等分點(diǎn),EA,FC,GB都是圓柱的母線.
(1)求證:平面ADE;
(2)設(shè)BC=1,已知直線AF與平面ACB所成的角為30°,求二面角A—FB—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著生活節(jié)奏的加快以及智能手機(jī)的普及,外賣(mài)點(diǎn)餐逐漸成為越來(lái)越多用戶(hù)的餐飲消費(fèi)習(xí)慣,由此催生了一批外賣(mài)點(diǎn)餐平臺(tái).已知某外賣(mài)平臺(tái)的送餐費(fèi)用與送餐距離有關(guān)(該平臺(tái)只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺(tái)隨機(jī)抽取100名點(diǎn)外賣(mài)的用戶(hù)進(jìn)行統(tǒng)計(jì),按送餐距離分類(lèi)統(tǒng)計(jì)結(jié)果如表:
送餐距離(千米) | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
頻數(shù) | 15 | 25 | 25 | 20 | 15 |
以這100名用戶(hù)送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.
(1)若某送餐員一天送餐的總距離為100千米,試估計(jì)該送餐員一天的送餐份數(shù);(四舍五入精確到整數(shù),且同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
(2)若該外賣(mài)平臺(tái)給送餐員的送餐費(fèi)用與送餐距離有關(guān),規(guī)定2千米內(nèi)為短距離,每份3元,2千米到4千米為中距離,每份7元,超過(guò)4千米為遠(yuǎn)距離,每份12元.記X為送餐員送一份外賣(mài)的收入(單位:元),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某客戶(hù)準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為二級(jí)過(guò)濾,使用壽命為十年如圖所示兩個(gè)二級(jí)過(guò)濾器采用并聯(lián)安裝,再與一級(jí)過(guò)濾器串聯(lián)安裝.
其中每一級(jí)過(guò)濾都由核心部件濾芯來(lái)實(shí)現(xiàn)在使用過(guò)程中,一級(jí)濾芯和二級(jí)濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立).若客戶(hù)在安裝凈水系統(tǒng)的同時(shí)購(gòu)買(mǎi)濾芯,則一級(jí)濾芯每個(gè)160元,二級(jí)濾芯每個(gè)80元.若客戶(hù)在使用過(guò)程中單獨(dú)購(gòu)買(mǎi)濾芯則一級(jí)濾芯每個(gè)400元,二級(jí)濾芯每個(gè)200元.現(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購(gòu)買(mǎi)濾芯的數(shù)量,為此參考了根據(jù)100套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中表1是根據(jù)100個(gè)一級(jí)過(guò)濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表,圖2是根據(jù)200個(gè)二級(jí)過(guò)濾器更換的濾芯個(gè)數(shù)制成的條形圖.
表1:一級(jí)濾芯更換頻數(shù)分布表
一級(jí)濾芯更換的個(gè)數(shù) | 8 | 9 |
頻數(shù) | 60 | 40 |
圖2:二級(jí)濾芯更換頻數(shù)條形圖
以100個(gè)一級(jí)過(guò)濾器更換濾芯的頻率代替1個(gè)一級(jí)過(guò)濾器更換濾芯發(fā)生的概率,以200個(gè)二級(jí)過(guò)濾器更換濾芯的頻率代替1個(gè)二級(jí)過(guò)濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為16的概率;
(2)記表示該客戶(hù)的凈水系統(tǒng)在使用期內(nèi)需要更換的二級(jí)濾芯總數(shù),求的分布列及數(shù)學(xué)期望;
(3)記分別表示該客戶(hù)在安裝凈水系統(tǒng)的同時(shí)購(gòu)買(mǎi)的一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù).若,且,以該客戶(hù)的凈水系統(tǒng)在使用期內(nèi)購(gòu)買(mǎi)各級(jí)濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直角梯形ABCD中,,,,將直角梯形ABCD(及其內(nèi)部)以AB所在直線為軸順時(shí)針旋轉(zhuǎn)90°,形成如圖所示的幾何體,其中M為的中點(diǎn).
(1)求證:;
(2)求異面直線BM與EF所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三個(gè)幾何體組合的正視圖和側(cè)視圖均為如下圖所示,則下列圖中能作為俯視圖的個(gè)數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com