如圖所示,AT切⊙O于T,若AT=2
6
,AE=3,AD=4,DE=2,則BC等于( 。
A、3B、4C、6D、8
考點(diǎn):與圓有關(guān)的比例線段
專題:選作題,立體幾何
分析:利用AT為⊙O的切線,求出AT,證明△EAD∽△CAB,可得
DE
BC
=
AE
AC
,即可求出BC.
解答: 解:∵AT為⊙O的切線,∴AT2=AD•AC.
∵AT=2
6
,AD=4,∴AC=6.
∵∠ADE=∠B,∠EAD=∠CAB,
∴△EAD∽△CAB,即
DE
BC
=
AE
AC
,
∴BC=
DE•AC
AE
=
2×6
3
=4.
故選:B.
點(diǎn)評(píng):本題考查切割線定理,考查三角形相似的判斷與性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)平面內(nèi),復(fù)數(shù)z=
2+i
i2013
,則復(fù)數(shù)z的共軛復(fù)數(shù)
.
z
對(duì)應(yīng)的點(diǎn)的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1,點(diǎn)E,F(xiàn),G分別是線段B1B,AB和A1C上的動(dòng)點(diǎn),觀察直線CE與D1F,CE與D1G.給出下列結(jié)論:
①對(duì)于任意給定的點(diǎn)E,存在點(diǎn)F,使得D1F⊥CE;
②對(duì)于任意給定的點(diǎn)F,存在點(diǎn)E,使得CE⊥D1F;
③對(duì)于任意給定的點(diǎn)E,存在點(diǎn)G,使得D1G⊥CE;
④對(duì)于任意給定的點(diǎn)G,存在點(diǎn)E,使得CE⊥D1G.
其中正確結(jié)論的序號(hào)是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的個(gè)數(shù)是( 。
(1)若直線l上有無(wú)數(shù)個(gè)點(diǎn)不在α內(nèi),則l∥α
(2)若直線l與平面α平行,l與平面α內(nèi)的任意一直線平行
(3)兩條平行線中的一條直線與平面平行,那么另一條也與這個(gè)平面平行
(4)若一直線a和平面α內(nèi)一直線b平行,則a∥α
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿足a1=1,an+2an=39(n∈N*),那么數(shù)列{an}的前50項(xiàng)和S50的最小值為( 。
A、637
B、559
C、481+25
39
D、492+24
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖程序:如果輸入5,則該程序運(yùn)行結(jié)果為(  )
A、1B、10C、25D、26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a3+a7=15,則a2+a8=( 。
A、10B、15C、12D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間四邊形ABCD的每條邊和對(duì)角線的長(zhǎng)都等于a,點(diǎn)M、N分別是邊AB、CD的中點(diǎn),求證:
(1)MN為AB和CD的公垂線;     
(2)求MN的長(zhǎng);
(3)求異面直線AN與CM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):(
1
2
)2+(
1
2
)4+(
1
2
)6+…+(
1
2
)n-1
(n為奇數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案