(本小題滿分13分)
已知拋物線、橢圓和雙曲線都經(jīng)過點
,它們在
軸上有共同焦點,橢圓和雙曲線的對稱軸是坐標軸,拋物線的頂點為坐標原點.
(1)求這三條曲線的方程;
(2)對于拋物線上任意一點
,點
都滿足
,求
的取值范圍.
(1)
;(2)
。
試題分析:(1)設(shè)拋物線方程為
,將
代入方程得
-------------------2分
由題意知橢圓、雙曲線的焦點為
----------------3分
對于橢圓,
,
所以橢圓方程為
----------------5分
對于雙曲線,
,
所以雙曲線方程為
----------------7分
(2)設(shè)
------------(8分)
由
得
---------------(9分)
恒成立------------------(10分)
則
----------------(12分)
∴
-----------(13分)
點評:中檔題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題求橢圓、雙曲線標準方程時,主要運用了曲線的定義,求拋物線方程則利用了待定系數(shù)法。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓
的離心率為
,橢圓短軸長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)已知動直線
與橢圓
相交于
、
兩點. ①若線段
中點的橫坐標為
,求斜率
的值;②若點
,求證:
為定值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
+
=1(a>b>0)的離心率是
,則
的最小值為( )
A. | B.1 | C. | D.2 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
的離心率為
,其中左焦點
(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x
2+y
2=1上,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線
的頂點在坐標原點,它的準線經(jīng)過雙曲線
:
的左焦點
且垂直于
的兩個焦點所在的軸,若拋物線
與雙曲線
的一個交點是
.
(1)求拋物線
的方程及其焦點
的坐標;
(2)求雙曲線
的方程及其離心率
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓的中心在原點,焦點在x軸上,焦距等于6,離心率等于
,則此橢圓的方程是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知A、B、C是橢圓
上的三點,點F(3,0),若
,則
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
點P在雙曲線
上•,
是這條雙曲線的兩個焦點,
,且
的三條邊長成等差數(shù)列,則此雙曲線的離心率是
查看答案和解析>>