20.在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,AB∥CD,∠BAD=90°,AB=AD=1,CD=2.
(1)求證:AB∥平面PCD;
(2)求證:BC⊥平面PBD.

分析 (1)由AB∥CD,利用直線與平面平行的判定定理即可得證;
(2)可求$BD=\sqrt{2}$,由勾股定理的逆定理知,CB⊥BD,又由PD⊥底面ABCD,CB?平面ABCD,可證CB⊥PD,即可證明BC⊥平面PBD.

解答 (本小題滿分13分)
證明:(1)∵AB∥CD,…(2分)
AB?平面PCD,CD?平面PCD…(5分)
∴AB∥平面PCD…(6分)
(2)在直角梯形ABCD中,∠BAD=90°,AB=AD=1,
∴$BD=\sqrt{2}$,…(7分)
∴BC2=(CD-AB)2+AD2=2,在△CBD中,由勾股定理的逆定理知,△CBD是直角三角形,且CB⊥BD,…(9分)
又PD⊥底面ABCD,CB?平面ABCD,
∴CB⊥PD,…(11分)
∵BD∩PD=D,∴BC⊥平面PBD.…(13分)

點(diǎn)評(píng) 本題主要考查了直線與平面平行的判定,直線與平面垂直的判定,考查了空間想象能力和推理論證能力,屬于基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若${A}_{n}^{3}$=12${C}_{n}^{2}$,則n=( 。
A.8B.7C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的一個(gè)焦點(diǎn)在直線y=2x-10上,則雙曲線的方程為$\frac{{x}^{2}}{5}-\frac{{y}^{2}}{20}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,那么函數(shù)解析式為y=2x2+1,值域?yàn)閧3,9}的“孿生函數(shù)”共有( 。
A.1個(gè)B.3個(gè)C.7個(gè)D.9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若直線l的方向向量為$\overrightarrow{a}$=(1,0,2),平面α的法向量為$\overrightarrow{u}$=(-2,0,-4),則直線與平面的位置關(guān)系是l⊥α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.定義數(shù)列{xn}:x1=1,xn+1=3xn3+2xn2+xn;數(shù)列{yn}:yn=$\frac{1}{1+2{x}_{n}+3{{x}_{n}}^{2}}$;數(shù)列{zn}:zn=$\frac{2+3{x}_{n}}{1+2{x}_{n}+3{{x}_{n}}^{2}}$;若{yn}的前n項(xiàng)的積為P,{zn}的前n項(xiàng)的和為Q,那么P+Q=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若隨機(jī)變量X~B(10,$\frac{2}{3}$),則方差DX=$\frac{20}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如果角α的終邊過(guò)點(diǎn)(2sin$\frac{π}{6}$,-2cos$\frac{π}{6}$),則sinα的值等于( 。
A.$\frac{\sqrt{2}}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知全集U=R,集合A={x|2≤x<5},集合B={x|y=$\sqrt{x-3}$+lg(9-x)},集合C={y|y=3x,x∈(-1,a]}
(1)求A∩(∁UB);
(2)若A∩C=A,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案