8.已知abc>0,則在下列各選項(xiàng)中,二次函數(shù)f(x)=ax2+bx+c的圖象不可能是(  )
A.B.C.D.

分析 根據(jù)二次函數(shù)的性質(zhì)分別對(duì)各個(gè)選項(xiàng)進(jìn)行判斷即可.

解答 解:對(duì)于A:a<0,c<0,
若abc>0,則b>0,
顯然-$\frac{2a}$>0,得到b>0,符合題意;
對(duì)于B:a>0,c<0,
若abc>0,則b<0,
而對(duì)稱軸x=-$\frac{2a}$>0,得:b<0,符合題意;
對(duì)于C:a<0,c>0,
若abc>0,則b<0,
而對(duì)稱軸x=-$\frac{2a}$<0,得:b<0,符合題意;
對(duì)于D:a>0,c<0,
若abc>0,則b<0,
而對(duì)稱軸x=-$\frac{2a}$<0,得:b>0,不符合題意;
故選:D.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查數(shù)形結(jié)合思想,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.?dāng)?shù)列{an}是首項(xiàng)為1,公差為2的等差數(shù)列,Sn是它前n項(xiàng)和,則$\lim_{n→∞}\frac{S_n}{a_n^2}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)=sin$\frac{π}{3}$x,A={1,2,3,4,5,6,7,8}現(xiàn)從集合A中任取兩個(gè)不同元素s、t,則使得f(s)•f(t)=0的可能情況為 (  )
A.12種B.13種C.14種D.15種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.上海市松江區(qū)天馬山上的“護(hù)珠塔”因其傾斜度超過意大利的比薩斜塔而號(hào)稱“世界第一斜塔”.興趣小組同學(xué)實(shí)施如下方案來測(cè)量塔的傾斜度和塔高:如圖,記O點(diǎn)為塔基、P點(diǎn)為塔尖、點(diǎn)P在地面上的射影為點(diǎn)H.在塔身OP射影所在直線上選點(diǎn)A,使仰角k∠HAP=45°,過O點(diǎn)與OA成120°的地面上選B點(diǎn),使仰角∠HPB=45°(點(diǎn)A、B、O都在同一水平面上),此時(shí)測(cè)得∠OAB=27°,A與B之間距離為33.6米.試求:
(1)塔高(即線段PH的長,精確到0.1米);
(2)塔身的傾斜度(即PO與PH的夾角,精確到0.1°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.方程4x-4•2x-5=0的解是( 。
A.x=0或x=log25B.x=-1或x=5C.x=log25D.x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)$y=x+\frac{a}{x}+1$有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)已知方程x2+(m-3)x+m=0有兩個(gè)不等正實(shí)根,求實(shí)數(shù)m的取值范圍.
(2)不等式(m2-2m-3)x2-(m-3)x-1<0對(duì)任意x∈R恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.集合P={x|x<2},集合Q={y|y<1},則P與Q的關(guān)系為( 。
A.P⊆QB.Q⊆PC.P=QD.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點(diǎn).
(1)求證:平面PAB∥平面EFG;
(2)證明:平面EFG⊥平面PAD;
(3)在線段PB上確定一點(diǎn)Q,使PC⊥平面ADQ,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案