5.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且7asinB=4c,cosB=$\frac{3}{5}$.
(1)求角A的大。
(2)設(shè)BC邊上的中點(diǎn)為D,|AD|=$\sqrt{137}$,求△ABC的面積.

分析 (1)由cosB=$\frac{3}{5}$,可得sinB,又7asinB=4c,代入得7a=5c,由正弦定理得7sinA=5sinC,化簡可得tanA=1,從而可求A的值.
(2)由余弦定理可得:AB2+BD2-2AB•BDcosB=137,代入可解得c=14,a=10,利用三角形面積公式即可得解.

解答 解:(1)∵由cosB=$\frac{3}{5}$,得sinB=$\frac{4}{5}$,…(1分)
又∵7asinB=4c,
∴代入得7a=5c,
由$\frac{a}{sinA}=\frac{c}{sinC}$,得7sinA=5sinC,…(3分)
∴7sinA=5sin(A+B),7sinA=5sinAcosB+5cosAsinB,…(5分)
∴得tanA=1,A=$\frac{π}{4}$,…(7分)
(2)∵由余弦定理可得:AB2+BD2-2AB•BDcosB=137,…(9分)
∴c2+($\frac{5c}{14}$)2-2c×$\frac{5}{14}c×\frac{3}{5}$=137,c=14,
∴則a=10,…(12分)
∴S=$\frac{1}{2}$acsinB=$\frac{1}{2}×14×10×\frac{4}{5}=56$.…(15分)

點(diǎn)評 本題主要考查了正弦定理,余弦定理,三角函數(shù)恒等變換的應(yīng)用,三角形面積公式的應(yīng)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知直線l1:y=k1x+1和直線l2=kx2+b,則k1=k2”是“l(fā)1∥l2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知關(guān)于x的方程x2+(k+2i)x+2+ki=0.
(1)有實根,求實數(shù)k及實根;
(2)有一根$\frac{1}{i}$-1,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)$(\sqrt{x}+\frac{1}{2x}{)^n}$的展開式中第5項和第6項的二項式系數(shù)最大,求展開式的常數(shù)項.
(2)(1-2x)2015=a0+a1x+a2x2+…+a2015x2015(x∈R)
①求a0+a1+a2+…+a2015的值.      
②求$\frac{a_1}{2}+\frac{a_2}{2^2}+…+\frac{{{a_{2015}}}}{{{2^{2015}}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.復(fù)數(shù)z=a+bi(a,b∈R,i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)點(diǎn)為Z,設(shè)r=|$\overline{OZ}$|,θ是以x軸的非負(fù)半軸為始邊,以O(shè)Z所在的射線為終邊的角,則z=a+bi=r(cosθ+isinθ),把r(cosθ+isinθ)叫做復(fù)數(shù)a+bi的三角形式.
(1)用數(shù)學(xué)歸納法證明:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ)(n∈N*);
(2)利用等式(1+i)100=[$\sqrt{2}$(cos$\frac{π}{4}$+isin$\frac{π}{4}$)]100,求C${\;}_{100}^{0}$-C${\;}_{100}^{2}$+C${\;}_{100}^{4}$-C${\;}_{100}^{6}$+…-C${\;}_{100}^{98}$+C${\;}_{100}^{100}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)P(x,y)是角α終邊上任意一點(diǎn)(記r=$\sqrt{{x^2}+{y^2}}$>0),寫出下列三角比:sinα=$\frac{y}{r}$cotα=$\frac{x}{y}$;secα=$\frac{r}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.不等式(x-2)$\sqrt{x+3}$≥0的解集是{-3}∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an}的公差d≠0,{an}中的部分項組成的數(shù)列ak1,ak2,…akn恰好成等比數(shù)列,其中k1=1,k2=5,k3=17,求:
(1)kn;
(2)求數(shù)列{kn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知數(shù)列{an}滿足:a1=1,an+1=2an+1(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足4b1-1•4b2-1•4b3-1…4bn-1=(an+1)bn,證明:{bn}是等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案