【題目】由于當前學(xué)生課業(yè)負擔(dān)較重,造成青少年視力普遍下降,現(xiàn)從某高中隨機抽取16名學(xué)生,經(jīng)校醫(yī)用對數(shù)視力表檢查得到每個學(xué)生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)如圖:
(Ⅰ)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(Ⅱ)若視力測試結(jié)果不低丁5.0,則稱為“好視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“好視力”的概率;
(Ⅲ)以這16人的樣本數(shù)據(jù)來估計整個學(xué)校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記ξ表示抽到“好視力”學(xué)生的人數(shù),求ξ的分布列及數(shù)學(xué)期望.
【答案】解:(Ⅰ)∵4.6和4.7都出現(xiàn)三次,
∴眾數(shù):4.6和4.7;中位數(shù):4.75
(Ⅱ)由題意知本題是一個古典概型,
設(shè)Ai表示所取3人中有i個人是“好視力”,
至多有1人是“好視力”記為事件A,包括有一個人是好視力和有零個人是好視力,
∴ .
(Ⅲ)ξ的可能取值為0、1、2、3
∴分布列為
∴Eξ=1× +2× +3× =0.75
【解析】(1)根據(jù)所給的莖葉圖看出16個數(shù)據(jù),找出眾數(shù)和中位數(shù),中位數(shù)需要按照從小到大的順序排列得到結(jié)論.(2)由題意知本題是一個古典概型,至多有1人是“好視力”包括有一個人是好視力和有零個人是好視力,根據(jù)古典概型公式得到結(jié)果.(3)由于從該校任選3人,記ξ表示抽到“好視力”學(xué)生的人數(shù),得到變量的可能取值是0、1、2、3,結(jié)合變量對應(yīng)的事件,算出概率,寫出分布列和期望.
【考點精析】根據(jù)題目的已知條件,利用莖葉圖和平均數(shù)、中位數(shù)、眾數(shù)的相關(guān)知識可以得到問題的答案,需要掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進行比較,將數(shù)的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數(shù),每個數(shù)具體是多少;⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)的影響,有時是我們最為關(guān)心的數(shù)據(jù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別為棱BB1、BC的中點,則異面直線AB1與EF所成角的大小為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱錐P﹣ABC的底面是等腰直角三角形,且∠ACB= ,側(cè)面PAB⊥底面ABC,AB=PA=PB=2.則這個三棱錐的三視圖中標注的尺寸x,y,z分別是( )
A. ,1,
B. ,1,1
C.2,1,
D.2,1,1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ADEF和菱形ABCD所在平面互相垂直,如圖,其中AF=1,AD=2,∠ADC= ,點N時線段AD的中點.
(Ⅰ)試問在線段BE上是否存在點M,使得直線AF∥平面MNC?若存在,請證明AF∥平面MNC,并求出 的值,若不存在,請說明理由;
(Ⅱ)求二面角N﹣CE﹣D的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:(x﹣ )2+(y﹣1)2=1和兩點A(﹣t,0),B(t,0)(t>0),若圓C上存在點P,使得∠APB=90°,則當t取得最大值時,點P的坐標是( )
A.( , )
B.( , )
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣ |+|x+m|,(m>0)
(I)證明:f(x)≥4
(II)若f(1)>5,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且f(﹣x)=f(x),則( )
A.f(x)在(0, )單調(diào)遞增
B.f(x)在( , )單調(diào)遞減
C.f(x)在( , )單調(diào)遞增
D.f(x)在( ,π)單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2013年至2016年期間,甲每年6月1日都到銀行存入m元的一年定期儲蓄,若年利率為q保持不變,且每年到期的存款本息自動轉(zhuǎn)為新的一年定期,到2017年6月1日甲去銀行不再存款,而是將所有存款的本息全部取回,則取回的金額是( )
A.m(1+q)4元
B.m(1+q)5元
C. 元
D. 元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com