【題目】已知向量, ,滿足, , , 為內(nèi)一點(包括邊界),,若,則以下結論一定成立的是( )
A. B. C. D.
【答案】B
【解析】以為原點,以所在直線軸建立坐標系,設,則有 , ,得,又點在內(nèi), 滿足的關系式為 ,取不滿足, ,排除選項,取,不滿足,排除選項,又, 正確,故選B.
【 方法點睛】本題主要考查平面向量數(shù)量積以及平面向量基本定理、排除法解選擇題,屬于難題. 用特例代替題設所給的一般性條件,得出特殊結論,然后對各個選項進行檢驗,從而做出正確的判斷,這種方法叫做特殊法. 若結果為定值,則可采用此法. 特殊法是“小題小做”的重要策略,排除法解答選擇題是高中數(shù)學一種常見的解題思路和方法,這種方法即可以提高做題速度和效率,又能提高準確性,這種方法主要適合下列題型:(1)求值問題(可將選項逐個驗證);(2)求范圍問題(可在選項中取特殊值,逐一排除);(3)圖象問題(可以用函數(shù)性質(zhì)及特殊點排除);(4)解方程、求解析式、求通項、求前 項和公式問題等等.
科目:高中數(shù)學 來源: 題型:
【題目】已知射手甲射擊一次,命中9環(huán)(含9環(huán))以上的概率為0.56,命中8環(huán)的概率為0.22,命中7環(huán)的概率為0.12.
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)求甲射擊一次,命中不足8環(huán)的概率;
(2)求甲射擊一次,至少命中7環(huán)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,側面PAD⊥底面ABCD,側棱PA=PD=,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求異面直線PB與CD所成角的余弦值;
(Ⅲ)求點A到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在坐標原點,焦點在軸上,短軸長為,且兩個焦點和短軸的兩個端點恰為一個正方形的頂點,過右焦點與軸不垂直的直線交橢圓于, 兩點.
(Ⅰ)求橢圓的方程.
(Ⅱ)當直線的斜率為時,求的面積.
(Ⅲ)在線段上是否存在點,使得經(jīng), 為領邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有六支足球隊參加單循環(huán)比賽(即任意兩支球隊只踢一場比賽),第一周的比賽中,各踢了場, 各踢了場, 踢了場,且隊與隊未踢過, 隊與隊也未踢過,則在第一周的比賽中, 隊踢的比賽的場數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,且,點是棱的中點,平面與棱交于點.
(1)求證: ;
(2)若,且平面平面,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在相應位置,并求出函數(shù)的解析式;
(2)把的圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π),其圖象最低點的縱坐標是-,相鄰的兩個對稱中心是(,0)和(,0).求:
(1)f(x)的解析式;
(2)f(x)的值域;
(3)f(x)圖象的對稱軸.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com