13.函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[0,1]上的最大值與最小值之差為3,則實數(shù)a的值為4.

分析 對a進行分類討論,再分別利用指數(shù)函數(shù)的單調(diào)性列出方程,求出a的值

解答 解:(1)當a>1時,有題意可得a-a0=a-1=3,
解得a=4;
(2)當0<a<1時,有題意可得a0-a=3,
解得a=-2,舍去.
故a=4

點評 本題主要指數(shù)函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.解方程:x2-2|x-1|-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$\overrightarrow{m}$=(2cosx+2$\sqrt{3}$sinx,1),$\overrightarrow{n}$=(cosx,-y),且滿足$\overrightarrow{m}$•$\overrightarrow{n}$=0,將y表示為x的函數(shù),并求f(x)的最小周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U=R,集合A={x|x+1<0},B={x|x2+3x<0},則 (∁UA)∩B等于( 。
A.{x|-3<x<0}B.{x|-1≤x<0}C.{x|x<-1}D.{x|-1<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an},其前n項和為${S_n}=\frac{3}{2}{n^2}+\frac{7}{2}n\;(n∈{N^*})$.
(Ⅰ)求數(shù)列{an}的通項公式,并證明數(shù)列{an}是等差數(shù)列;
(Ⅱ)若數(shù)列{bn}滿足${b_n}={2^{{a_n}-2}}$,求數(shù)列{bn}的通項公式,并證明數(shù)列{bn}是等比數(shù)列;
(Ⅲ)若數(shù)列{cn}滿足${c_n}={a_n}•{b_n}^{\frac{1}{3}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{{{5^x}-m+1}}{{{5^x}+1}}$為奇函數(shù).
(1)求實數(shù)m的值;
(2)判斷函數(shù)的單調(diào)性,并用函數(shù)的單調(diào)性定義證明;
(3)求滿足-$\frac{2}{3}<f(x-1)<f(\frac{12}{13})$的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.程序框圖如圖,如果程序運行的結(jié)果為S=132,若要使輸出的結(jié)果為1320,則正確的修改方法是( 。 
A.在①處改為k=13,s=1B.在②處改為K<10
C.在③處改為S=S×(K-1)D.在④處改為K=K-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知二面角α-l-β,空間中有一點A,且AC⊥α于C,AB⊥β于B,若∠BAC=75°,則二面角α-l-β的大小為75°或105°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=2sin(2x+$\frac{π}{6}$).
(1)求函數(shù)的對稱軸方程;
(2)求x∈[$\frac{π}{12}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

同步練習(xí)冊答案