【題目】已知函數(shù)常數(shù))滿足.
(1)求出的值,并就常數(shù)的不同取值討論函數(shù)奇偶性;
(2)若在區(qū)間上單調(diào)遞減,求的最小值;
(3)在(2)的條件下,當(dāng)取最小值時,證明:恰有一個零點且存在遞增的正整數(shù)數(shù)列,使得成立.
【答案】(1),時是偶函數(shù),時,非奇非偶函數(shù);(2);(3)證明見解析.
【解析】
試題(1)直接代入已知可求得,根據(jù)奇偶函數(shù)的定義可說明函數(shù)是奇(偶)函數(shù),如果要說明它不是奇(偶)函數(shù),可舉例說明,即或;(2)據(jù)題意,即當(dāng)時,總有成立,變形整理可得,由于分母,故,即,注意到,,從而,因此有;(3)在(2)的條件下,,理論上講應(yīng)用求出零點,由函數(shù)表達(dá)式可看出,當(dāng)時,無零點,當(dāng)時,函數(shù)是遞增函數(shù),如有零點,只有一個,解方程,即,根據(jù)零點存在定理確定出,這個三次方程具體的解求不出,但可變形為,想到無窮遞縮等比數(shù)列的和,有,因此可取.證畢.
(1)由得,解得.
從而,定義域為
當(dāng)時,對于定義域內(nèi)的任意,有,為偶函數(shù) 2分
當(dāng)時,從而,不是奇函數(shù);,不是偶函數(shù),非奇非偶. 4分
(2)對于任意的,總有恒成立,即,得. 6分
,,,從而.
又,∴,的最小值等于. 10分
(3)在(2)的條件下,.
當(dāng)時,恒成立,函數(shù)在無零點. 12分
當(dāng)時,對于任意的,恒有,
即,所以函數(shù)在上遞增,又,,
在是有一個零點.
綜上恰有一個零點,且15分
,得,
又,故,
取18分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)的圖象與的圖象關(guān)于對稱.
(1)若關(guān)于的方程在上有解,求實數(shù)的取值范圍;
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點.
(I)證明:AE⊥PD;
(II)設(shè)AB=PA=2,
①求異面直線PB與AD所成角的正弦值;
②求二面角E-AF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,為自然對數(shù)的底數(shù).
(1)當(dāng)時,證明:,;
(2)若函數(shù)在上存在兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的左、右焦點分別為,,離心率為,點在橢圓C上,且⊥,△F1MF2的面積為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知直線l與橢圓C交于A,B兩點,,若直線l始終與圓相切,求半徑r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項均為正數(shù),其前項和為,且滿足,若數(shù)列滿足,且等式對任意成立.
(1)求數(shù)列的通項公式;
(2)將數(shù)列與的項相間排列構(gòu)成新數(shù)列,設(shè)該新數(shù)列為,求數(shù)列的通項公式和前項的和;
(3)對于(2)中的數(shù)列前項和,若對任意都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)曲線是焦點在軸上的橢圓,兩個焦點分別是是,,且,是曲線上的任意一點,且點到兩個焦點距離之和為4.
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)的左頂點為,若直線:與曲線交于兩點,(,不是左右頂點),且滿足,求證:直線恒過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年初,某市為了實現(xiàn)教育資源公平,辦人民滿意的教育,準(zhǔn)備在今年8月份的小升初錄取中在某重點中學(xué)實行分?jǐn)?shù)和搖號相結(jié)合的錄取辦法.該市教育管理部門為了了解市民對該招生辦法的贊同情況,隨機(jī)采訪了440名市民,將他們的意見和是否近三年家里有小升初學(xué)生的情況進(jìn)行了統(tǒng)計,得到如下的2×2列聯(lián)表.
贊同錄取辦法人數(shù) | 不贊同錄取辦法人數(shù) | 合計 | |
近三年家里沒有小升初學(xué)生 | 180 | 40 | 220 |
近三年家里有小升初學(xué)生 | 140 | 80 | 220 |
合計 | 320 | 120 | 440 |
(1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯誤的概率不超過0.001的前提下認(rèn)為是否贊同小升初錄取辦法與近三年是否家里有小升初學(xué)生有關(guān);
(2)從上述調(diào)查的不贊同小升初錄取辦法人員中根據(jù)近三年家里是否有小升初學(xué)生按分層抽樣抽出6人,再從這6人中隨機(jī)抽出3人進(jìn)行電話回訪,求3人中恰有1人近三年家里沒有小升初學(xué)生的概率.
附:,其中.
P() | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com