【題目】已知直線.
(1)若直線不經(jīng)過(guò)第四象限,求的取值范圍;
(2)若直線交軸負(fù)半軸于點(diǎn),交軸正半軸于點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的面積為,求的最小值及此時(shí)直線的方程.
【答案】(1)k≥0;(2)面積最小值為4,此時(shí)直線方程為:x﹣2y+4=0
【解析】
(1)可求得直線l的方程及直線l在y軸上的截距,依題意,從而可解得k的取值范圍;
(2)依題意可求得A(﹣,0),B(0,1+2k),S=(4k++4),利用基本不等式即可求得答案.
(1)直線l的方程可化為:y=kx+2k+1,則直線l在y軸上的截距為2k+1,
要使直線l不經(jīng)過(guò)第四象限,則,解得k的取值范圍是:k≥0
(2)依題意,直線l在x軸上的截距為:﹣,在y軸上的截距為1+2k,
∴A(﹣,0),B(0,1+2k),又﹣<0且1+2k>0,
∴k>0,故S=|OA||OB|=×(1+2k)=(4k++4)≥(4+4)=4,當(dāng)且僅當(dāng)4k=,即k=時(shí)取等號(hào),
故S的最小值為4,此時(shí)直線l的方程為x﹣2y+4=0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知雙曲線C1: ,曲線C2:|y|=|x|+1,P是平面內(nèi)一點(diǎn),若存在過(guò)點(diǎn)P的直線與C1 , C2都有公共點(diǎn),則稱(chēng)P為“C1﹣C2型點(diǎn)”
(1)在正確證明C1的左焦點(diǎn)是“C1﹣C2型點(diǎn)“時(shí),要使用一條過(guò)該焦點(diǎn)的直線,試寫(xiě)出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1﹣C2型點(diǎn)”;
(3)求證:圓x2+y2= 內(nèi)的點(diǎn)都不是“C1﹣C2型點(diǎn)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊分別為a,b,c,且a+c=6,b=2, .
(1)求a,c的值;
(2)求sin(A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為T(mén)n且 (λ為常數(shù)).令cn=b2n(n∈N*)求數(shù)列{cn}的前n項(xiàng)和Rn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】養(yǎng)路處建造圓錐形無(wú)底倉(cāng)庫(kù)用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉(cāng)庫(kù)的底面直徑為12m,高4m,養(yǎng)路處擬建一個(gè)更大的圓錐形倉(cāng)庫(kù),以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉(cāng)庫(kù)的底面直徑比原來(lái)大4m(高不變);二是高度增加4m(底面直徑不變).
(1)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的體積;
(2)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的表面積;
(3)哪個(gè)方案更經(jīng)濟(jì)些?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,點(diǎn),分別為橢圓的左右頂點(diǎn),點(diǎn)在上,且面積的最大值為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)為的左焦點(diǎn),點(diǎn)在直線上,過(guò)作的垂線交橢圓于,兩點(diǎn).證明:直線平分線段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)高考之后計(jì)劃去三個(gè)不同社區(qū)進(jìn)行幫扶活動(dòng),每人只能去一個(gè)社區(qū),每個(gè)社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為 ( )
A. 24 B. 8 C. 7 D. 6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com