設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的實軸長為6,F(xiàn)(5,0)是雙曲線的一個焦點,則雙曲線的漸近線方程為( 。
A、y=±
3
4
x
B、y=±
4
3
x
C、y=±
9
16
x
D、y=±
16
9
x
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:先確定a,c,可得b,再求出雙曲線的漸近線方程.
解答: 解:因為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的實軸長為6,F(xiàn)(5,0)是雙曲線的一個焦點,
所以a=3,c=5,
所以b=4,
所以雙曲線的漸近線方程為y=±
4
3
x.
故選:B.
點評:本題考查雙曲線的簡單性質(zhì)的應用,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

一個等腰直角三角形的頂點分別在底邊長為4的正三棱柱的三條側(cè)棱上,則此直角三角形的斜邊長是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
2i
i-1
的共軛復數(shù)是( 。
A、1-iB、1+i
C、-1-iD、-1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
p
|=2
2
,|
q
|=3,
p
q
夾角為
π
4
,則以
p
,
q
為鄰邊的平行四邊形的一條對角線的長度為(  )
A、
5
B、5
C、9
D、27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x、y滿足不等式組
3x+8y+15≥0
5x+3y-6≤0
2x-5y+10≥0
,那么Z=x-y的最大值等于( 。
A、7B、6C、5D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x、y滿足條件
x+2y-9≤0
x-4y+3≤0
x≥1
,若目標函數(shù)z=ax+y(a∈R)取得最大值時的最優(yōu)解有無數(shù)個,則z=ax+y的最小值為(  )
A、
1
2
B、
3
2
C、
3
4
D、
5
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與f(x)=(x-2)2(x≤2)的圖象關(guān)于直線y=x對稱的函數(shù)g(x)=(  )
A、2-
x
(x≥2)
B、2+
x
(x≥0)
C、2-
x
(x≥0)
D、2+
x
(x≥2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
、
b
,若|
a
|=2sin15°,|
b
|=4cos15°,且
a
b
的夾角為30°,則
a
b
的值為(  )
A、
1
2
B、1
C、
3
2
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(3,-4),
n
=(a,3),且
m
n
,則a的值為( 。
A、-4
B、4
C、
9
4
D、-
9
4

查看答案和解析>>

同步練習冊答案