設(shè)f(x)是奇函數(shù),且在(0,+∞)內(nèi)是減函數(shù),又f(-2)=0,則(x-3)•f(x)<0的解集是
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)f(x)是R上的奇函數(shù),又f(-2)=0,求出f(0)=0,f(2)=0,對(duì)x>3,x<3討論,同時(shí)必須結(jié)合函數(shù)在(0,+∞)內(nèi)是減函數(shù),得到f(x)在(-∞,0)內(nèi)是減函數(shù),先求交集,再求并集即可.
解答: 解:∵f(x)是奇函數(shù),又f(-2)=0,
∴f(-2)=-f(2)=0,即f(2)=0,
∵(x-3)•f(x)<0,
∴(1)當(dāng)x>3時(shí),f(x)<0,
由于f(2)=0,f(x)在(0,+∞)內(nèi)是減函數(shù),
∴x>3時(shí),f(x)<0成立;
(2)當(dāng)x<3時(shí),有f(x)>0,
由于f(x)是R上的奇函數(shù),故f(0)=0,
又f(2)=0,f(x)在(0,+∞)內(nèi)是減函數(shù),
①當(dāng)0<x<2時(shí),f(x)>0,當(dāng)2<x<3時(shí),f(x)<0,
∴當(dāng)0<x<2時(shí),有(x-3)•f(x)<0;
②當(dāng)x<0時(shí),由奇函數(shù)的性質(zhì)得,f(x)在(-∞,0)內(nèi)是減函數(shù),
又f(-2)=0,當(dāng)x<-2時(shí),f(x)>0;當(dāng)-2<x<0時(shí),f(x)<0.
∴當(dāng)x<-2時(shí),有(x-3)•f(x)<0.
綜上可得,(x-3)•f(x)<0的解集是(-∞,-2)∪(0,2)∪(3,+∞).
故答案為:(-∞,-2)∪(0,2)∪(3,+∞).
點(diǎn)評(píng):本題考查函數(shù)的性質(zhì)及應(yīng)用,考查奇函數(shù)的定義以及圖象特征,考查分類討論的思想方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,函數(shù)f(x)=x3-
3a
2
x+a2,x∈R.
(Ⅰ)求f(x)在[-1,1]上的單調(diào)區(qū)間;
(Ⅱ)當(dāng)0<a<2時(shí),求|f(x)|在[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方形ABCD中,點(diǎn)E為AD的中點(diǎn),若在正方形ABCD內(nèi)部隨機(jī)取一個(gè)點(diǎn)Q,則點(diǎn)Q落在△ABE內(nèi)部的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合M={(x,y)|x2+y2≤4},N={(x,y)|(x-1)2+(y-1)2≤r2},(r>0),當(dāng)M∩N=M,則r的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在區(qū)間[-2,2]上是減函數(shù),則不等式f(x)<f(-
1
2
)
的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(x-2)5的二項(xiàng)展開式中含x3項(xiàng)的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a<b,二次函數(shù)y=ax2+bx+c≥0對(duì)任意實(shí)數(shù)x恒成立.則M=
a+2b+4c
b-a
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A是B的必要而不充分條件,C是B的充要條件,D是C的充分而不必要條件,則D是A的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R,若x+y>cosx-cosy,則下面式子一定成立的是(  )
A、x+y<0
B、x+y>0
C、x-y>0
D、x-y<0

查看答案和解析>>

同步練習(xí)冊(cè)答案