【題目】已知函數(shù)是奇函數(shù),,當時,,則不等式的解集為_______.
【答案】
【解析】
由題意構(gòu)造函數(shù)g(x)=xf(x)求出g′(x),根據(jù)條件判斷出g(x)的單調(diào)性和奇偶性,由f(2)=0得g(2)=0,結(jié)合g(x)單調(diào)性判斷出各個區(qū)間上的符號,從而可得到f(x)在各個區(qū)間上的符號,即可求出不等式f(x)<0的解集.
設(shè)g(x)=xf(x),則g′(x)=xf′(x)+f(x),
∵當x<0時,有xf′(x)+f(x)>0,則g′(x)>0,
∴g(x)在(﹣∞,0)上單調(diào)遞增,
∵函數(shù)f(x)是R上奇函數(shù),∴函數(shù)g(x)是R上的偶函數(shù),
則g(x)在(0,+∞)上單調(diào)遞減,
又f(2)=0,則g(2)=0,
∴在(0,2)內(nèi)恒有g(x)>0;在(2,+∞)內(nèi)恒有g(x)<0,
在(﹣∞,﹣2)內(nèi)恒有g(x)<0;在(﹣2,0)內(nèi)恒有g(x)>0,
∴在(0,2)內(nèi)恒有f(x)>0;在(2,+∞)內(nèi)恒有f(x)<0,
在(﹣∞,﹣2)內(nèi)恒有f(x)>0;在(﹣2,0)內(nèi)恒有f(x)<0,
∴不等式f(x)<0的解集是(﹣2,0)∪(2,+∞),
故答案為.
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的原點為極點,軸的正半軸為極軸,建立極坐標系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若直線與軸交于點,與曲線交于點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位決定投資3200元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每米長造價40元,兩側(cè)墻砌磚,每米長造價45元,頂部每平方米造價20元,求:
(1)倉庫頂部面積的最大允許值是多少?
(2)為使達到最大,而實際投資又不超過預算,那么正面鐵柵應設(shè)計為多長?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將正方形沿對角線折成直二面角,
①與平面所成角的大小為
②是等邊三角形
③與所成的角為
④
⑤二面角為
則上面結(jié)論正確的為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐PABCD中,側(cè)面PAD是正三角形,底面ABCD是菱形,且∠ABC=60°,M為PC的中點.
(1)求證:PC⊥AD.
(2)在棱PB上是否存在一點Q,使得A,Q,M,D四點共面?若存在,指出點Q的位置并證明;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國家放開計劃生育政策,鼓勵一對夫婦生育2個孩子.在某地區(qū)的100000對已經(jīng)生育了一胎夫婦中,進行大數(shù)據(jù)統(tǒng)計得,有100對第一胎生育的是雙胞胎或多胞胎,其余的均為單胞胎.在這99900對恰好生育一孩的夫婦中,男方、女方都愿意生育二孩的有50000對,男方愿意生育二孩女方不愿意生育二孩的有對,男方不愿意生育二孩女方愿意生育二孩的有對,其余情形有對,且.現(xiàn)用樣本的頻率來估計總體的概率.
(1)說明“其余情形”指何種具體情形,并求出,,的值;
(2)該地區(qū)為進一步鼓勵生育二孩,實行貼補政策:凡第一胎生育了一孩的夫婦一次性貼補5000元,第一胎生育了雙胞胎或多胞胎的夫婦只有一次性貼補15000元.第一胎已經(jīng)生育了一孩再生育了二孩的夫婦一次性再貼補20000元.這種補貼政策直接提高了夫婦生育二孩的積極性:原先男方或女方中只有一方愿意生育二孩的夫婦現(xiàn)在都愿意生育二孩,但原先男方、女方都不愿意生育二孩的夫婦仍然不愿意生育二孩.設(shè)為該地區(qū)的一對夫婦享受的生育貼補,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com