【題目】某學(xué)校高一 、高二 、高三三個(gè)年級(jí)共有 名教師,為調(diào)查他們的備課時(shí)間情況,通過分層

抽樣獲得了名教師一周的備課時(shí)間 ,數(shù)據(jù)如下表(單位 :小時(shí)):

高一年級(jí)

高二年級(jí)

高三年級(jí)

(1)試估計(jì)該校高三年級(jí)的教師人數(shù) ;

(2)從高一年級(jí)和高二年級(jí)抽出的教師中,各隨機(jī)選取一人,高一年級(jí)選出的人記為甲 ,高二年級(jí)選出的人記為乙 ,求該周甲的備課時(shí)間不比乙的備課時(shí)間長(zhǎng)的概率 ;

(3)再?gòu)母咭、高二、高三三個(gè)年級(jí)中各隨機(jī)抽取一名教師,他們?cè)撝艿膫湔n時(shí)間分別是(單位: 小時(shí)),這三個(gè)數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中的數(shù)據(jù)平均數(shù)記為 ,試判斷的大小. (結(jié)論不要求證明)

【答案】(1);(2);(3)

【解析】試題分析:(1)直接根據(jù)分層抽樣方法,可得高三年級(jí)的教師共有(人);(2)根據(jù)互斥事件、獨(dú)立事件的概率公式求解;(3)分別求出三組總平均值,以及新加入的三個(gè)數(shù)的平均數(shù)為9,比較大小即可.

試題解析:(1)抽出的20位教師中,來自高三年級(jí)的有8名,

根據(jù)分層抽樣方法,高三年級(jí)的教師共有(人)

(2)設(shè)事件為 “甲是現(xiàn)有樣本中高一年級(jí)中的第個(gè)教師”,

事件 “乙是現(xiàn)有樣本中高二年級(jí)中的第個(gè)教師”,

由題意知: ,

設(shè)事件為“該周甲的備課時(shí)間比乙的備課時(shí)間長(zhǎng)”,由題意知,

所以

;

(3), ,

三組總平均值,

新加入的三個(gè)數(shù)的平均數(shù)為9,比小,

故拉低了平均值,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦點(diǎn)在軸上,且橢圓的焦距為2.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)的直線與橢圓交于兩點(diǎn),過軸且與橢圓交于另一點(diǎn), 為橢圓的右焦點(diǎn),求證:三點(diǎn)在同一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,若acos2 +ccos2 = b,那么a,b,c的關(guān)系是(
A.a+b=c
B.a+c=2b
C.b+c=2a
D.a=b=c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)的平均數(shù)是2.8,方差是3.6,若將這組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上60,得到一組新數(shù)據(jù),則所得新數(shù)據(jù)的平均數(shù)和方差分別是(
A.57.2,3.6
B.57.2,56.4
C.62.8,63.6
D.62.8,3.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是各項(xiàng)均不相等的數(shù)列, 為它的前項(xiàng)和,滿足.

(1)若,且成等差數(shù)列,求的值;

(2)若的各項(xiàng)均不相等,問當(dāng)且僅當(dāng)為何值時(shí), 成等差數(shù)列?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高職院校進(jìn)行自主招生文化素質(zhì)考試,考試內(nèi)容為語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科,總分為200分.現(xiàn)從上線的考生中隨機(jī)抽取20人,將其成績(jī)用莖葉圖記錄如下:

td style="width:16.2pt; padding:3.75pt 5.4pt; vertical-align:middle">

15

6

5

4

16

3

5

8

8

2

17

2

3

6

8

8

8

6

5

18

5

7

19

2

3

(Ⅰ)計(jì)算上線考生中抽取的男生成績(jī)的方差;(結(jié)果精確到小數(shù)點(diǎn)后一位)

(Ⅱ)從上述莖葉圖180分以上的考生中任選2人作為考生代表出席座談會(huì),求所選考生恰為一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Cy2=2px過點(diǎn)P1,1.過點(diǎn)(0,)作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)Mx軸的垂線分別與直線OP、ON交于點(diǎn)A,B,其中O為原點(diǎn).

)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

)求證:A為線段BM的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案