精英家教網 > 高中數學 > 題目詳情
8.在長方體ABCD-A1B1C1D1中,E、F分別是面對角線B1D1、A1B上的點,且D1E=2EB1,BF=2FA1.求證.EF∥AD1

分析 取A1B1中點M,連結AM、MC1,證明M、E、C1共線,且C1E=2EM,M、F、A三點共線,且AF=2FM,即可證明結論.

解答 證明:取A1B1中點M,連結AM、MC1,
設MC1與B1D1相交于點E'.
∵M是A1B1中點,∴D1E′=2 E′D1,
又∵D1E=2EB1,∴E′與E重合,
∴M、E、C1共線,且C1E=2EM.
同理,M、F、A三點共線,且AF=2FM,
∴EF∥AC1,

點評 本題考查直線與直線平行,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

18.某校高考數學成績ξ近似地服從正態(tài)分布N(100,52),且P(ξ<110)=0.98,P(90<ξ<100)的值為0.48.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.在△ABC中,若$\frac{c}=\frac{3}{5}$,則$\frac{sinB+2sinC}{sinC}$=$\frac{13}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點為F1,F2,點P在橢圓C上,且PF1⊥PF2,|PF1|=$\frac{4}{3}$,|PF2|=$\frac{14}{3}$.
(1)求橢圓的方程;    
(2)若直線l:y=kx+3與橢圓恒有不同交點A、B,且$\overrightarrow{OA}$•$\overrightarrow{OB}$>1(O為坐標原點),求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.一個四面體的頂點在空間直角坐標系O-xyz的坐標分別是(0,1,1),(1,2,1),(1,1,2),(0,3,3),畫出該四面體的正視圖時,以yOz平面為投影面,則得到的正視圖的面積是2.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.|$\overrightarrow{a}$|=3,|$\overrightarrow$|=4,且$\overrightarrow{a}$與$\overrightarrow$的夾角為150°,則($\overrightarrow{a}$+$\overrightarrow$)2=$25-12\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.已知tan(α-$\frac{β}{2}$)=$\frac{1}{2}$,tan(β-$\frac{α}{2}$)=-$\frac{1}{3}$,則tan$\frac{α+β}{2}$=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.函數y=x+1,y=x2,y=$\frac{1}{x}$,y=x|x|中,既是奇函數又是增函數的是y=x|x|.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知函數f(x)=cos2x-sin2x+2$\sqrt{3}$sinxcosx+1.
(1)求f(x)的最小正周期,并求f(x)的最小值及此時x的取值集合;
(2)若f(α)=2,且α∈[$\frac{\sqrt{3}}{4}$,$\frac{\sqrt{3}}{2}$],求α的值.

查看答案和解析>>

同步練習冊答案