已知直線l:y=kx+1,⊙C:(x-1)2+(y+1)2=12
(1)判斷直線l與⊙C的公共點個數(shù);
(2)求直線l被⊙C截得的最短弦長.
考點:直線與圓的位置關(guān)系,圓的切線方程
專題:計算題,直線與圓
分析:(1)求出圓的圓心與半徑,直線恒過的定點,即可判斷直線l與⊙C的公共點個數(shù);
(2)求出圓心與定點的距離,利用垂徑定理,求直線l被⊙C截得的最短弦長.
解答: 解:(1)直線l:y=kx+1,恒過(0,1)點,
圓⊙C:(x-1)2+(y+1)2=12,的圓心(1,-1),半徑為:2
3

當(dāng)(0,1)與圓心的距離為:
(0-1)2+(1+1)2
=
5
<2
3

∴直線l與⊙C的公共點個數(shù)為:2;
(2)直線l被⊙C截得的最短弦長.就是過(0,1)的直線與圓心距離最大時,弦長最短,
最短弦長為:2
(2
3
)
2
-(
5
)
2
=2
7
點評:本題考查圓與直線的位置關(guān)系,直線與圓的交點個數(shù),垂徑定理的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(t)=
1-t
1+t
,g(x)=cosx•f(sinx)+sinx•f(cosx),x∈(
π
2
,π).
(1)將函數(shù)g(x)化簡成Asin(ωx+φ)+B(A>0,ω>0,φ∈[-π,π])的形式;
(2)若g(x0)=
4
2
5
,且x0∈(
π
2
,
4
),求g(x0+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

汽車是碳排放量比較大的行業(yè)之一,某地規(guī)定,從2014年開始,將對二氧化碳排放量超過130g/km的輕型汽車進行懲罰性征稅.檢測單位對甲、乙兩品牌輕型汽車各抽取5輛進行二氧化碳排放量檢測,記錄如下(單位:g/km).
80110120140150
100120x100160
經(jīng)測算得乙品牌輕型汽車二氧化碳排放量的平均值為
.
x
=120g/km.
(1)從被檢測的5輛甲品牌輕型汽車中任取2輛,則至少有一輛二氧化碳排放量超過130g/km的概率是多少?
(2)求表中x的值,并比較甲、乙兩品牌輕型汽車二氧化碳排放量的穩(wěn)定性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a
x
+2,x∈[1,+∞)

(1)當(dāng)a=
1
2
時,①用定義探討函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性;
②解不等式:f(2x-
1
2
)<f(x+1006)
;
(2)若對任意x∈[1,+∞),f(x)>0恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2
+bx-1,
(1)當(dāng)a=0且b=1時,證明:對?x>0,f(x)≤g(x);
(2)若b=2,且h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(3)數(shù)列{an},若存在常數(shù)M>0,?n∈N*,都有an<M,則稱數(shù)列{an}有上界.已知bn=1+
1
2
+…+
1
n
,試判斷數(shù)列{bn}是否有上界.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Rt△AOB的三個頂點都在拋物線y2=2px上,其中直角頂點O為原點,OA所在直線的方程為y=
3
x,△AOB的面積為6
3
,求該拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sina+sinb=
2
2
,求cosa+cosb的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f1(x),f2(x),h(x),如果存在實數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由;
    第一組:f1(x)=lg
x
10
,f2(x)=lg10x,h(x)=lgx;
    第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1;
(2)設(shè)f1(x)=log2x,f2(x)=log 
1
2
x,a=2,b=1,生成函數(shù)h(x).若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實數(shù)t的取值范圍;
(3)設(shè)f1(x)=x(x>0),f2(x)=
1
x
(x>0),取a>0,b>0,生成函數(shù)h(x)圖象的最低點坐標(biāo)為(2,8).若對于任意正實數(shù)x1,x2且x1+x2=1.試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若2x2+ax-2a+1>0在a∈[-1,3]上恒成立,則x的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案