17.已知不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+2y-4≤0}\end{array}\right.$表示的平面區(qū)域恰好被面積最小的圓C:(x-a)2+(y-b)2=r2及其內(nèi)部所覆蓋,則圓C的方程為( 。
A.(x-1)2+(y-2)2=5B.(x-2)2+(y-1)2=8C.(x-4)2+(y-1)2=6D.(x-2)2+(y-1)2=5

分析 根據(jù)題意可知平面區(qū)域表示的是三角形及其內(nèi)部,且△OPQ是直角三角形,進(jìn)而可推斷出覆蓋它的且面積最小的圓是其外接圓,進(jìn)而求得圓心和半徑,則圓的方程可得

解答 解:由題意知此平面區(qū)域表示的是以O(shè)(0,0),P(4,0),Q(0,2)構(gòu)成的三角形及其內(nèi)部,
且△OPQ是直角三角形,
所以覆蓋它的且面積最小的圓是其外接圓,故圓心是(2,1),半徑是 $\sqrt{5}$,
所以圓C的方程是(x-2)2+(y-1)2=5.
故選:D

點(diǎn)評 本題主要考查了直線與圓的方程的應(yīng)用.考查了數(shù)形結(jié)合的思想,轉(zhuǎn)化和化歸的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集U=R,集合A={x|0<log2x<2},B={y|y=x2+2},則(CUB)∩A=( 。
A.(1,2)B.(1,4)C.[2,4)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知tanα=2,求下列各式的值
(Ⅰ)$\frac{4sinα-2cosα}{5cosα+3sinα}$
(Ⅱ)$\frac{1}{4}{sin^2}α+\frac{1}{3}sinαcosα+\frac{1}{2}{cos^2}α+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.絕對值|x-1|的幾何意義是數(shù)軸上的點(diǎn)x與點(diǎn)1之間的距離,那么對于實(shí)數(shù)a,b,|x-a|+|x-b|的幾何意義即為點(diǎn)x與點(diǎn)a、點(diǎn)b的距離之和.
(1)直接寫出|x-1|+|x-2|與|x-1|+|x-2|+|x-3|的最小值,并寫出取到最小值時(shí)x滿足的條件;
(2)設(shè)a1≤a2≤…≤an是給定的n個(gè)實(shí)數(shù),記S=|x-a1|+|x-a2|+…+|x-an|.試猜想:若n為奇數(shù),則當(dāng)x∈{${a}_{\frac{n+1}{2}}$}時(shí)S取到最小值;若n為偶數(shù),則當(dāng)x∈[${a}_{\frac{n}{2}}$,${a}_{\frac{n}{2}+1}$]時(shí),S取到最小值;(直接寫出結(jié)果即可)
(3)求|x-1|+|2x-1|+|3x-1|+…+|10x-1|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知四棱錐S-ABCD中,底面ABCD是直角梯形,∠ABC=90°,AD∥BC,SA=AB=BC=2,AD=1,SA⊥底面ABCD.
(1)求四棱錐S-ABCD的體積;
(2)(理)求SC與平面SAB所成角的大小
(文)求異面直線SC與AD所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.有如下幾個(gè)結(jié)論:
①若函數(shù)y=f(x)滿足:$f(x)=-\frac{1}{{f({x+1})}}$,則2為y=f(x)的一個(gè)周期,
②若函數(shù)y=f(x)滿足:f(2x)=f(2x+1),則$\frac{1}{2}$為y=f(x)的一個(gè)周期,
③若函數(shù)y=f(x)滿足:f(x+1)=f(1-x),則y=f(x+1)為偶函數(shù),
④若函數(shù)y=f(x)滿足:f(x+3)+f(1-x)=2,則(3,1)為函數(shù)y=f(x-1)的圖象的對稱中心.
正確的結(jié)論為①③(填上正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=log2x-(x-1)2+2的零點(diǎn)個(gè)數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若點(diǎn)P(3a-9,a+2)在角α的終邊上,且cosα≤0,sinα>0,則實(shí)數(shù)a的取值范圍是(-2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線x2=2py,(p>0)在x=1處的切線方程為2x-2y-1=0,則拋物線的準(zhǔn)線為(  )
A.x=-$\frac{1}{2}$B.x=-1C.y=-$\frac{1}{2}$D.y=-1

查看答案和解析>>

同步練習(xí)冊答案