【題目】已知直線l的極坐標(biāo)方程為ρsin(θ+ )= .
(1)在極坐標(biāo)系下寫出θ=0和θ= 時(shí)該直線上的兩點(diǎn)的極坐標(biāo),并畫出該直線;
(2)已知Q是曲線ρ=1上的任意一點(diǎn),求點(diǎn)Q到直線l的最短距離及此時(shí)Q的極坐標(biāo).
【答案】
(1)解:直線l經(jīng)過(guò)A(2,0), 兩點(diǎn),
在極坐標(biāo)系下,直線如圖所示:
(2)解:曲線ρ=1化為直角坐標(biāo)方程得x2+y2=1,該曲線為單位圓,
將直線l的極坐標(biāo)方程 化為直角坐標(biāo)方程得x+y﹣2=0
要求圓上任意一點(diǎn)到直線l的最短距離,只要求圓心O(0,0)到直線l的距離即可.
由點(diǎn)到直線的距離公式得: ,
所以點(diǎn)Q到直線l的最短距離為 ,
此時(shí),點(diǎn)Q的極坐標(biāo)為 .
【解析】(1)將θ=0和θ= 分別代入直線l的極坐標(biāo)方程,求出ρ,從而得出兩點(diǎn)的極坐標(biāo),畫出直線;(2)分別求出直線l和曲線ρ=1的直角坐標(biāo)方程,要求圓上任意一點(diǎn)到直線l的最短距離,只要求圓心O(0,0)到直線l的距離即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,一條寬為1km的兩平行河岸有村莊A和供電站C,村莊B與A、C的直線距離都是2km,BC與河岸垂直,垂足為D.現(xiàn)要修建電纜,從供電站C向村莊A、B供電.修建地下電纜、水下電纜的費(fèi)用分別是2萬(wàn)元/km、4萬(wàn)元/km.
(1)已知村莊A與B原來(lái)鋪設(shè)有舊電纜,但舊電纜需要改造,改造費(fèi)用是0.5萬(wàn)元/km.現(xiàn)決定利用此段舊電纜修建供電線路,并要求水下電纜長(zhǎng)度最短,試求該方案總施工費(fèi)用的最小值;
(2)如圖②,點(diǎn)E在線段AD上,且鋪設(shè)電纜的線路為CE、EA、EB.若∠DCE=θ(0≤θ≤),試用θ表示出總施工費(fèi)用y (萬(wàn)元)的解析式,并求y的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長(zhǎng)為,頂點(diǎn)在平面上的射影為,有,且.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點(diǎn)使得⊥平面,如果存在,求的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照,,,,的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在,的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中x、y的值;
(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到市政廣場(chǎng)參加環(huán)保知識(shí)宣傳的志愿者活動(dòng),求所抽取的2名同學(xué)來(lái)自不同組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(其中e為自然對(duì)數(shù)的底數(shù)),g(x)= x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣,求T(x)在[0,1]上的最大值;
(2)若m=﹣,n∈N*,求使f(x)的圖象恒在g(x)圖象上方的最大正整數(shù)n.[注意:7<e2<].
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C:(x﹣3)2+(y﹣4)2=5,A、B是圓C上的兩個(gè)動(dòng)點(diǎn),AB=2,則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)若關(guān)于的不等式在上恒成立,求的取值范圍;
(2)設(shè)函數(shù),若在上存在極值,求的取值范圍,并判斷極值的正負(fù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,若a1=1,anan+1=( )n﹣2 , 則滿足不等式 + + +…+ + <2016的正整數(shù)n的最大值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com