20.已知曲線C上的動點(diǎn)P到兩定點(diǎn)O(0,0),A(3,0)的距離之比為$\frac{1}{2}$.
(1)求曲線C的方程;
(2)若直線l的方程為y=kx-2,其中k<-2,且直線l交曲線C于A,B兩點(diǎn),求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

分析 (1)設(shè)P(x,y),由條件運(yùn)用兩點(diǎn)的距離公式,化簡整理,即可得到所求軌跡方程;
(2)聯(lián)立直線方程和圓的方程,運(yùn)用韋達(dá)定理和向量的數(shù)量積的坐標(biāo)表示,結(jié)合基本不等式,即可得到最小值.

解答 解:(1)設(shè)P(x,y),由題意可得$\frac{|PO|}{|PA|}$=$\frac{1}{2}$,
即為2$\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{(x-3)^{2}+{y}^{2}}$,
化簡可得x2+y2+2x-3=0,
曲線C的方程為圓(x+1)2+y2=4;
(2)將直線y=kx-2代入圓的方程,
可得(1+k2)x2+(2-4k)x+1=0,
判別式為(2-4k)2-4(1+k2)>0,由k<-2,顯然成立;
設(shè)A(x1,y1),B(x2,y2),
可得x1+x2=$\frac{4k-2}{1+{k}^{2}}$,x1x2=$\frac{1}{1+{k}^{2}}$,
即有y1y2=(kx1-2)(kx2-2)
=k2x1x2-2k(x1+x2)+4=$\frac{4+4k-3{k}^{2}}{1+{k}^{2}}$,
則$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=$\frac{5+4k-3{k}^{2}}{1+{k}^{2}}$
=-3+$\frac{4(2+k)}{1+{k}^{2}}$,可令2+k=t(t<0),
可得$\frac{4(2+k)}{1+{k}^{2}}$=$\frac{4t}{{t}^{2}-4t+5}$=$\frac{4}{t+\frac{5}{t}-4}$,
由t+$\frac{5}{t}$≤-2$\sqrt{t•\frac{5}{t}}$=-2$\sqrt{5}$.
當(dāng)且僅當(dāng)t=-$\sqrt{5}$,即k=-2-$\sqrt{5}$,等號成立.
即有$\frac{4}{t+\frac{5}{t}-4}$≥$\frac{4}{-2\sqrt{5}-4}$=4-2$\sqrt{5}$,
則$\overrightarrow{OA}$•$\overrightarrow{OB}$≥1-2$\sqrt{5}$.
故當(dāng)k=-2-$\sqrt{5}$時(shí),$\overrightarrow{OA}$•$\overrightarrow{OB}$取得最小值1-2$\sqrt{5}$.

點(diǎn)評 本題考查曲線方程的求法,注意運(yùn)用代入法,考查直線和圓的位置關(guān)系,注意聯(lián)立直線和圓的方程,運(yùn)用韋達(dá)定理,同時(shí)考查向量數(shù)量積的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在數(shù)列{an}中a1=1,且an=$\frac{n-1}{n+1}$an-1(n≥2),求αn與sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知曲線C1的極坐標(biāo)方程為ρ2+2ρcosθ-3=0,直線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{1}{2}t}\\{y=k+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),若兩曲線有公共點(diǎn),則k的取值范圍是( 。
A.k∈RB.k>4C.k<-4D.-4≤k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若底面為正三角形的幾何體的三視圖如圖所示,則幾何體的側(cè)面積為( 。
A.$12\sqrt{3}$B.$36\sqrt{3}$C.$27\sqrt{3}$D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知PA⊥矩形ABCD所在的平面,M、N分別是AB、PC的中點(diǎn),若AD=PA=a,$AB=\sqrt{2}a$.
(1)在PC上是否存在一點(diǎn)Q,使得AQ∥平面MND?若存在,求出該點(diǎn)的位置,若不存在,請說明理由;
(理)(2)求二面角N-MD-C大。
(文)(2)求三棱錐P-MND的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.?dāng)?shù)列{an}中,數(shù)列{an}的通項(xiàng)公式${a_n}=\frac{1}{n(n+1)}$,則該數(shù)列的前9項(xiàng)之和等于$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出下列五個(gè)命題:
①命題?x∈R,cosx>0的否定是?x∈R,cosx≤0;
②函數(shù)$f(x)={log_{\frac{1}{2}}}({{x^2}-4})$的單調(diào)遞增區(qū)間是(-∞,0);
③已知命題p:?x∈R,sin(π-x)=sinx;命題q:α,β均是第一象限的角,且α>β,則sinα>sinβ,則p∧?q是真命題;
④定義在R上的函數(shù)f(x)對于任意x的都有$f(x-2)=-\frac{4}{f(x)}$,則f(x)為周期函數(shù);
⑤命題“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個(gè)零點(diǎn)”的逆命題是真命題.
則其正確的命題為①③④.(填上所有正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.(理) 已知數(shù)列{an}的前n項(xiàng)和為Sn,且an=$\frac{1}{(n+1)(n+2)}$,若Sn<t對任意n∈N*都成立,則t的取值范圍為$t≥\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.按要求作答:若A(-2,3),B(3,-2),C($\frac{1}{2}$,m)三點(diǎn)共線,求:
(1)m的值;
(2)直線AC的方程(要求寫成一般式).

查看答案和解析>>

同步練習(xí)冊答案