如圖所示,EP交圓于E,C兩點,PD切圓于D,G為CE上一點且PG=PD,連接DG并延長交圓于點A,作弦AB垂直EP,垂足為F.
(Ⅰ)求證:AB為圓的直徑;
(Ⅱ)若AC=BD,AB=5,求弦DE的長.
考點:與圓有關(guān)的比例線段,直線和圓的方程的應(yīng)用
專題:直線與圓
分析:(Ⅰ)由已知PG=PD,得到∠PDG=∠PGD,由切割弦定理得到∠PDA=∠DBA,進一步得到∠EGA=∠DBA,從而∠PFA=∠BDA.最后可得∠BDA=90°,說明AB為圓的直徑;
(Ⅱ)連接BC,DC.由AB是直徑得到∠BDA=∠ACB=90°,然后由Rt△BDA≌Rt△ACB,得到∠DAB=∠CBA.再由∠DCB=∠DAB可推得DC∥AB.進一步得到ED為直徑,則ED長可求.
解答: (Ⅰ)證明:∵PG=PD,∴∠PDG=∠PGD,
由于PD為切線,故∠PDA=∠DBA,
又∵∠EGA=∠PGD,∴∠EGA=∠DBA,
∴∠DBA+∠BAD=∠EGA+∠BAD,
從而∠PFA=∠BDA.
又AF⊥EP,∴∠PFA=90°,則∠BDA=90°,
故AB為圓的直徑.

(Ⅱ)解:連接BC,DC.
由于AB是直徑,故∠BDA=∠ACB=90°.
在Rt△BDA與Rt△ACB中,AB=BA,AC=BD,從而得Rt△BDA≌Rt△ACB,
于是∠DAB=∠CBA.
又∵∠DCB=∠DAB,∴∠DCB=∠CBA,故DC∥AB.
∵AB⊥EP,∴DC⊥EP,∠DCE為直角,
∴ED為直徑,又由(1)知AB為圓的直徑,
∴DE=AB=5.
點評:本題考查了直線和圓的位置關(guān)系,考查了圓的切割線定理的應(yīng)用,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

cos(2α-β)=-
11
14
,sin(α-2β)=
4
3
7
,已知0<β<
π
4
<α<
π
2
,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用一平面截棱長為2的正方體,截得的多面體的三視圖如圖所示,ABCDE,B′MNPC′是邊長為2的正方形的一角,其中AE=CD=MN=PC′=1,F(xiàn),G,H,G′分別是所在各邊的中點,其側(cè)視圖與正視圖尺寸相同,則該多面體的體積是( 。
A、5
B、7-6
3
C、8-6
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex-a(x+1)(e是自然對數(shù)的底數(shù),e=2.71828…),且f′(0)=0.
(1)求實數(shù)a的值,并求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)-f(-x),對任意x1、x2∈R(x1≠x2),恒有
g(x2)-g(x1)
x2-x1
>m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,長方形的四個頂點為O(0,0),A(2,0),B(2,4),C(0,4)曲線y=ax2經(jīng)過點B,現(xiàn)將一質(zhì)點隨機投入正方形OABC中,則質(zhì)點落在圖中陰影區(qū)域的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC內(nèi),a、b、c分別為角A、B、C所對的邊,且滿足sinA+sinB=2sinC,a=2b.
(1)求cosA的值;
(2)若S△ABC=
3
4
15
,求△ABC三邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2-2x)lnx+ax2+2.
(Ⅰ)當a=-1時,求f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當a>0時,設(shè)函數(shù)g(x)=f(x)-x-2,且函數(shù)g(x)有且僅有一個零點,若e-2<x<e,g(x)≤m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=x3-ax(a∈R),且x=1是f(x)的一個極值點.
(1)求a的值;
(2)求過函數(shù)f(x)圖象上點A(2,f(2))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一位同學(xué)設(shè)計計算13+23+…+103的程序框圖時把圖中的①②的順序顛倒了,則輸出的結(jié)果比原結(jié)果大
 

查看答案和解析>>

同步練習(xí)冊答案