如圖,PQ是半徑為1的圓A的直徑,△ABC是邊長為1的正三角形,則
BP
CQ
的最大值為
 

考點:平面向量數(shù)量積的運(yùn)算,向量在幾何中的應(yīng)用
專題:平面向量及應(yīng)用
分析:利用向量的三角形法則、數(shù)量積運(yùn)算即可得出.
解答: 解:由圖可知
BP
=
AP
-
AB
,
CQ
=
AQ
-
AC

從而
BP
CQ
=-1-
AP
AC
-
AQ
AB
+
1
2
,
設(shè)∠BAP=θ,
BP
CQ
=-cos(θ+60°)-cos(180°-θ)-
1
2
=sin(θ+30°)-
1
2
,
故當(dāng)θ=60°時,
BP
CQ
的最大值為
1
2

故答案為:
1
2
點評:本題考查了向量的三角形法則、數(shù)量積運(yùn)算、兩角和差的正弦公式、三角函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,D、E分別為CC1、AD的中點,F(xiàn)為BB1上的點,且B1F=3BF
(I)證明:EF∥平面ABC;
(Ⅱ)若AC=2
2
,CC1=2,BC=
2
∠ACB=
π
3
,求二面角B-AD-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內(nèi),每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關(guān)系式近似為y=
16
8-x
-1 ,   0 ≤ x ≤ 4 
5-
1
2
x ,     4<x ≤ 10
.若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當(dāng)空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.
(1)若一次噴灑4個單位的凈化劑,則凈化時間可達(dá)幾天?
(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù):
2
取1.4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若某圖的程序框圖如圖所示,則該程序運(yùn)行后的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)系是以直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸.已知直線L的參數(shù)方程為:
x=t
y=t-a
,(t為參數(shù)),圓C的極坐標(biāo)方程為:ρ=2cosθ,若直線L經(jīng)過圓C的圓心,則常數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
e1
,
e2
為相互垂直的單位向量,若向量λ
e1
+
e2
e1
e2
的夾角等于60°,則實數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC為直角三角形,且∠ACB=90°,AB=8,點P是平面ABC外一點,若PA=PB=PC,且PO⊥平面ABC,O為垂足,則OC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖的程序框圖表示的算法中,輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A、
3
B、
3
2
C、-
3
D、0

查看答案和解析>>

同步練習(xí)冊答案