【題目】已知函數(shù).
若曲線在處的切線斜率為0,求a的值;
(Ⅱ)若恒成立,求a的取值范圍;
(Ⅲ)求證:當(dāng)時(shí),曲線 (x>0)總在曲線的上方.
【答案】(I). (II).(III)見解析.
【解析】試題分析:(Ⅰ)利用導(dǎo)函數(shù)在x=0處的值等于零,可以求出a的值.
(Ⅱ).分,,三種情況討論求的最小值即可;
(Ⅲ) 當(dāng)時(shí),構(gòu)造,證明
試題解析:(I)函數(shù)的定義域?yàn)?/span>.
因?yàn)?/span>,所以.
由得.
(II).
①當(dāng)時(shí),令得.
時(shí),;時(shí),.
在上單調(diào)遞減,在上單調(diào)遞增.
所以當(dāng)時(shí),有最小值.
“恒成立”等價(jià)于“最小值大于等于0”,即.
因?yàn)?/span>,所以.
②當(dāng)時(shí),符合題意;
③當(dāng)時(shí),取,則,不符合題意.
綜上,若對(duì)恒成立,則的取值范圍為.
(III)當(dāng)時(shí),令,可求.
因?yàn)?/span>,,且在上單調(diào)遞增,
所以在(0,)上存在唯一的,使得,即,且
.
當(dāng)變化時(shí),與在(0,)上的情況如下:
0 | |||
極小 |
則當(dāng)時(shí),存在最小值,且.
因?yàn)?/span>,所以.
所以當(dāng)時(shí),
所以當(dāng)時(shí),曲線總在曲線的上方.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于,②,③,④,⑤與⑥,選擇恰當(dāng)?shù)年P(guān)系式序號(hào)填空:
(1)角為第一象限角的充要條件是_____;
(2)角為第二象限角的充要條件是_____;
(3)角為第三象限角的充要條件是_____;
(4)角為第四象限角的充要條件是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列的前n項(xiàng)和為,記, ,…, 中奇數(shù)的個(gè)數(shù)為.
(Ⅰ)若= n,請(qǐng)寫出數(shù)列的前5項(xiàng);
(Ⅱ)求證:"為奇數(shù), (i = 2,3,4,...)為偶數(shù)”是“數(shù)列是單調(diào)遞增數(shù)列”的充分不必要條件;
(Ⅲ)若,i=1, 2, 3,…,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;
(2)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和.已知.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>
(1)一年中有31天的月份的全體;
(2)大于小于12.8的整數(shù)的全體;
(3)梯形的全體構(gòu)成的集合;
(4)所有能被3整除的數(shù)的集合;
(5)方程的解組成的集合;
(6)不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,EB垂直于菱形ABCD所在平面,且EB=BC=2,∠BAD=60°,點(diǎn)G、H分別為邊CD、DA的中點(diǎn),點(diǎn)M是線段BE上的動(dòng)點(diǎn).
(I)求證:GH⊥DM;
(II)當(dāng)三棱錐D-MGH的體積最大時(shí),求點(diǎn)A到面MGH的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取8次,記錄如下:
甲:82,81,79,78,95,88,93,84;乙:92,95,80,75,83,80,90,85
(1) 用莖葉圖表示這兩組數(shù)據(jù),并計(jì)算平均數(shù)與方差;
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,從統(tǒng)計(jì)學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中兩個(gè))考慮,你認(rèn)為選派哪位學(xué)生參加合適?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為的菱形中,.點(diǎn),分別在邊,上,點(diǎn)與點(diǎn),不重合,,.沿將翻折到的位置,使平面平面.
(1)求證:平面;
(2)當(dāng)與平面所成的角為時(shí),求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com