在平面直角坐標系中,A(0,0),B(1,2)兩點繞定點P順時針方向旋轉(zhuǎn)θ角后,分別到A′(4,4),B′(5,2)兩點,則cosθ的值為
 
考點:簡單曲線的極坐標方程
專題:三角函數(shù)的求值,直線與圓
分析:求出AA′和BB′的中垂線方程,聯(lián)立得出點P的坐標,然后求出PB與PB′的斜率,利用兩條直線所成的角公式求出tanα,即可求出cosα的值.
解答: 解:由題意,畫出圖形,如圖所示;
∵AA′的中點坐標為(2,2),
∴它的中垂線方程:y-2=-(x-2),
即x+y-4=0;
同理BB′的中垂線方程為x=3;
x+y-4=0
x=4

解得
x=3
y=1
;
∴點P(3,1)為固定點.
又kPB=
2-1
1-3
=-
1
2
,kPB=
2-1
5-3
=
1
2

∴tanα=
-
1
2
-
1
2
1+(-
1
2
1
2
=-
4
3
;
∴cosα=-
3
5
點評:本題考查了直線方程的應用問題,解題時應根據(jù)題意畫出圖形,結合圖形解答問題,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
a
b
,其中向量
a
=(m,cosx),
b
=(1+sinx,1),x∈R,且f(
π
2
)=2
(1)求實數(shù)m的值;
(2)求函數(shù)f(x)的最小值及此時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知定點F及定直線l,直線m經(jīng)過F與l垂直,垂足為K,|FK|=p(p>0),動圓P經(jīng)過F與l相切.
(Ⅰ)建立適當?shù)闹苯亲鴺讼,求出動圓圓心P軌跡C的方程;
(Ⅱ)經(jīng)過點F的直線交(Ⅰ)中軌跡C于A、B兩點,點C在直線l上,且BC⊥l.試問,直線AC與m的交點是否在軌跡C上?若不在,請說明理由;若在,請給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C1
x2
4
+
y2
=1
,曲線C2
x2
+
y2
4λ2
=1(0<λ<1)
.曲線C2的左頂點恰為曲線C1的左焦點.
(Ⅰ)求λ的值;
(Ⅱ)設P(x0,y0)為曲線C2上一點,過點P作直線交曲線C1于A,C兩點.直線OP交曲線C1于B,D兩點.若P為AC中點.
①求證:直線AC的方程為x0x+2y0y=2;
②求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在1和2之間依次插入n(n∈N*)個正數(shù)a1,a2,a3,…,an使得這n+2個數(shù)構成遞增的等比數(shù)列,將這n+2個數(shù)的乘積記作Tn,令bn=2log2Tn
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)令cn=2n,設Sn=
b1
c1
+
b2
c2
+…+
bn
cn
,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一顆骰子連擲100次,則點6出現(xiàn)次數(shù)X的均值E(X)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將側(cè)棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐的側(cè)面和底面分別叫直角三棱錐的“直角面和斜面”;過三棱錐頂點及斜面任兩邊中點的截面均稱為斜面的“中面”.已知直角三角形具有性質(zhì):斜邊長等于斜邊的中線長的2倍.類比上述性質(zhì),直角三棱錐具有性質(zhì):
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對大于或等于2的自然數(shù)m的n次方冪有如下分解方式:
22=1+3   32=1+3+5    42=1+3+5+7
23=3+5   33=7+9+11  43=13+15+17+19
根據(jù)上述分解規(guī)律,則52=1+3+5+7+9,若m3(m∈N+)的分解中最小的數(shù)是183,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(1,-1),B(4,0),C(2,2).平面區(qū)域D由所有滿足
AP
AB
AC
(1<λ≤a,1<μ≤b)的點P(x,y)組成的區(qū)域.若區(qū)域D的面積為8,則a+b的最小值為
 

查看答案和解析>>

同步練習冊答案