【題目】已知函數(shù)在點(diǎn)處的切線方程為, (其中為常數(shù)).
(1)求函數(shù)的解析式;
(2)若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時,求證: (其中e為自然對數(shù)的底數(shù)).
【答案】(1) ;(2) ;(3)詳見解析.
【解析】試題分析:(1)對函數(shù)求導(dǎo)根據(jù)點(diǎn)斜式求出切線方程;(2)構(gòu)造新函數(shù),則有在上恒成立;對函數(shù)求導(dǎo)分類討論函數(shù)的單調(diào)性,求出參數(shù)范圍; (3)令,求導(dǎo)可得取得最小值;構(gòu)造, 取得最小值;當(dāng)時, ,得證.
試題解析:(), ,得;又由,得,
所以.
(2)對任意,不等式恒成立;
等價于對任意,不等式恒成立;
令,則有在上恒成立;
;
若,當(dāng)時, ,所以在上單調(diào)遞增,
所以,當(dāng)時, ;
若,當(dāng)時, ,當(dāng)時, ,
所以在上單調(diào)遞減,在上單調(diào)遞增,
所以當(dāng)時, ,與題意矛盾;
綜上,實(shí)數(shù)的取值范圍為.
(3)令,
;令,解得;
令,解得;∴在上單調(diào)遞減;在上單調(diào)遞增;
故當(dāng)時, 取得最小值;
,
,令,解得;令,解得;
所以在上單調(diào)遞減;在上單調(diào)遞增;
故當(dāng)時, 取得最小值;
所以,當(dāng)時, ,
即,
當(dāng)且僅當(dāng)時,等號成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為參數(shù).
(1)當(dāng)時,求函數(shù)在處的切線方程;
(2)討論函數(shù)極值點(diǎn)的個數(shù),并說明理由;
(3)若對任意, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個分段函數(shù)可利用函數(shù) 來表示,例如要表示一個分段函數(shù) ,可將函數(shù)g(x)表示為g(x)=xS(x﹣2)+(﹣x)S(2﹣x).現(xiàn)有一個函數(shù)f(x)=(﹣x2+4x﹣3)S(x﹣1)+(x2﹣1)S(1﹣x).
(1)求函數(shù)f(x)在區(qū)間[0,4]上的最大值與最小值;
(2)若關(guān)于x的不等式f(x)≤kx對任意x∈[0,+∞)都成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù)f(x),若存在x∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點(diǎn).已知函數(shù)f(x)=ax2+(b+1)x+(b﹣1)(a≠0).
(1)當(dāng)a=1,b=2時,求函數(shù)f(x)的不動點(diǎn);
(2)若對任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個相異的不動點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若f(x)的兩個不動點(diǎn)為x1 , x2 , 且f(x1)+x2= ,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)在定義域(﹣ ,3)內(nèi)可導(dǎo),其圖像如圖所示.記y=f(x)的導(dǎo)函數(shù)為y=f′(x),則不等式 ≤0的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足: .
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若.
求證:數(shù)列為等差數(shù)列;
記數(shù)列的前項(xiàng)和為,求滿足的所有正整數(shù)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表
廣告費(fèi)用x(萬元) | 4 | 2 | 3 | 5 |
銷售額y(萬元) | 49 | 26 | 39 | 54 |
根據(jù)上表可得回歸方程 = x+ 的 為9.4,據(jù)此模型預(yù)報廣告費(fèi)用為6萬元時銷售額為( )
A.63.6萬元
B.65.5萬元
C.67.7萬元
D.72.0萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為等腰梯形,,,,與相交于,且,矩形底面,為線段上一動點(diǎn),滿足.
(Ⅰ)若平面,求實(shí)數(shù)的值;
(Ⅱ)當(dāng)時,銳二面角的余弦值為,求多面體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com