【題目】已知一個(gè)分段函數(shù)可利用函數(shù) 來表示,例如要表示一個(gè)分段函數(shù) ,可將函數(shù)g(x)表示為g(x)=xS(x﹣2)+(﹣x)S(2﹣x).現(xiàn)有一個(gè)函數(shù)f(x)=(﹣x2+4x﹣3)S(x﹣1)+(x2﹣1)S(1﹣x).
(1)求函數(shù)f(x)在區(qū)間[0,4]上的最大值與最小值;
(2)若關(guān)于x的不等式f(x)≤kx對任意x∈[0,+∞)都成立,求實(shí)數(shù)k的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】證明與化簡.
(1)求證:cotα=tanα+2cot2α;
(2)請利用(1)的結(jié)論證明:cotα=tanα+2tan2α+4cot4α;
(3)請你把(2)的結(jié)論推到更一般的情形,使之成為推廣后的特例,并加以證明:
(4)化簡:tan5°+2tan10°+4tan20°+8tan50°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n∈N,f(x)=(1+x)m+(1+x)n .
(1)當(dāng)m=n=5時(shí),若 ,求a0+a2+a4的值;
(2)f(x)展開式中x的系數(shù)是9,當(dāng)m,n變化時(shí),求x2系數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(mx2+mx+1),若此函數(shù)的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是;若此函數(shù)的值域?yàn)镽,則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c(b,c∈R),并設(shè) ,
(1)若F(x)圖像在x=0處的切線方程為x﹣y=0,求b、c的值;
(2)若函數(shù)F(x)是(﹣∞,+∞)上單調(diào)遞減,則 ①當(dāng)x≥0時(shí),試判斷f(x)與(x+c)2的大小關(guān)系,并證明之;
②對滿足題設(shè)條件的任意b、c,不等式f(c)﹣Mc2≤f(b)﹣Mb2恒成立,求M的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)在(0,+∞)上是增函數(shù),且f( )=0,則不等式xf(x)>0的解集是( )
A.(0, )
B.( ,+∞)??
C.(﹣ ,0)∪( ,+∞)
D.(﹣∞,﹣ )∪(0, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,定義在[﹣1,2]上的函數(shù)f(x)的圖象為折線段ACB,
(1)求函數(shù)f(x)的解析式;
(2)請用數(shù)形結(jié)合的方法求不等式f(x)≥log2(x+1)的解集,不需要證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點(diǎn)處的切線方程為, (其中為常數(shù)).
(1)求函數(shù)的解析式;
(2)若對任意,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證: (其中e為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知設(shè)函數(shù)f(x)=loga(1+2x)﹣loga(1﹣2x)(a>0,a≠1).
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并證明;
(3)求使f(x)>0的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com