下表是某廠1~4月份用水量(單位:百噸)的一組數(shù)據(jù):
月份x1234
用水量y4.5432.5
由散點(diǎn)圖可知,用水量y與月份x之間有較好的線性相關(guān)關(guān)系,其線性回歸直線方程是
y
=-0.7x+a,求a的值.
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:首先求出x,y的平均數(shù),根據(jù)所給的線性回歸方程知道b的值,根據(jù)樣本中心點(diǎn)滿足線性回歸方程,把樣本中心點(diǎn)代入,得到關(guān)于a的一元一次方程,解方程即可.
解答: 解:
.
x
=
1
4
(1+2+3+4)=2.5,
.
y
=
1
4
(4.5+4+3+2.5)=3.5,
將(2.5,3.5)代入線性回歸直線方程是
y
=-0.7x+a,可得3.5=-1.75+a,
故a=5.25.
點(diǎn)評(píng):本題考查回歸分析,考查樣本中心點(diǎn)滿足回歸直線的方程,考查求一組數(shù)據(jù)的平均數(shù),是一個(gè)運(yùn)算量比較小的題目,并且題目所用的原理不復(fù)雜,是一個(gè)好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)M(1,2)為雙曲線C右支上一點(diǎn),且F2在以線段MF1為直徑的圓的圓周上,則雙曲線C的離心率為( 。
A、
2
+1
B、2
2
-1
C、3+2
2
D、
6
+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將半徑分別為2和1的兩個(gè)球完全裝入底面邊長(zhǎng)為4的正四棱柱容器中,則該容器的高至少為( 。
A、6
B、3+2
2
C、3+
7
D、3+
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,多面體ABCDEFG中,F(xiàn)A⊥平面ABCD,F(xiàn)A∥BG∥DE,BG=
1
4
AF,DE=
3
4
AF,四邊形ABCD是正方形,AF=AB.
(1)求證:GC∥平面ADEF;
(2)求二面角C-GE-D余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=a•2n-1
(1)若a=3,求a1和a4的值;       
(2)若{an}是等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-x
(1)求f(x)在點(diǎn)(0,1)處的切線方程;
(2)若F(x)=f(x)-ax2-1的導(dǎo)函數(shù)F′(x)在(0,2)上單調(diào),求實(shí)數(shù)a的取值范圍;
(3)對(duì)m≥0,n≥0,試比較f(m)+f(n)與mn+2的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直角坐標(biāo)系xOy和極坐標(biāo)系Ox的原點(diǎn)與極點(diǎn)重合,x軸正半軸與極軸重合,單位長(zhǎng)度相同,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+1
(θ為參數(shù)),直線l的極坐標(biāo)方程為θ=
π
4
(ρ∈R).
(1)求圓C及直線l的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求
CA
CB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=k(x-1)ex+x2
(Ⅰ)當(dāng)時(shí)k=-
1
e
,求函數(shù)f(x)在點(diǎn)(1,1)處的切線方程;
(Ⅱ)若在y軸的左側(cè),函數(shù)g(x)=x2+(k+2)x的圖象恒在f(x)的導(dǎo)函數(shù)f′(x)圖象的上方,求k的取值范圍;
(Ⅲ)當(dāng)k≤-l時(shí),求函數(shù)f(x)在[k,1]上的最小值m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

證明下列等式:
(1)
cos(α-
π
2
)
sin(
2
+α)
•sin(α-2π)•cos(2π-α)=sin2α
(2)
tan(2π-α)•sin(-2π-α)•cos(6π-α)
sin(α+
2
)•cos(α+
2
)
=-tanα

查看答案和解析>>

同步練習(xí)冊(cè)答案