6.已知,函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(3-ax),函數(shù)g(x)=x2-2x+m.
(1)當(dāng)a=1時(shí),求x∈[0,1]時(shí)f(x)的最大值;
(2)若g(x)<0在x∈(-1,2)恒成立,求m的取值范圍;
(3)當(dāng)a=3時(shí),函數(shù)$h(x)={(\frac{1}{2})^{f(x)}}-3g(x)$在x∈(0,1)有兩個(gè)不同的零點(diǎn),求m的取值范圍.

分析 (1)由復(fù)合函數(shù)的單調(diào)性:同增異減,可得f(x)在x∈[0,1]單調(diào)遞增,計(jì)算即可得到最大值;
(2)由題意可得x2-2x+m<0在x∈(-1,2)恒成立,運(yùn)用二次函數(shù)的性質(zhì),即可得到所求范圍;
(3)由題意可得x2-x+m-1=0在x∈(0,1)有兩個(gè)不同的解,設(shè)d(x)=x2-x+m-1,運(yùn)用二次函數(shù)的圖象和二次方程的分布,可得判別式大于0,d(0)>0,d(1)>0,解不等式即可得到所求范圍.

解答 解:(1)∵a=1,f(x)=$lo{g}_{\frac{1}{2}}(3-x)$在x∈[0,1]單調(diào)遞增,
∴fmax(x)=f(1)=$lo{g}_{\frac{1}{2}}2$=-1;
(2)g(x)<0在x∈(-1,2)恒成立,
∴x2-2x+m<0在x∈(-1,2)恒成立,
∴m<-x2+2x=-(x-1)2+1,即有-x2+2x∈(-3,1],
∴m≤-3;
(3)當(dāng)a=3時(shí),函數(shù)h(x)=3-3x-3x2+6x-3m
在x∈(0,1)有兩個(gè)不同的零點(diǎn).
∴3-3x-3x2+6x-3m=0,
∴x2-x+m-1=0在x∈(0,1)有兩個(gè)不同的解,
設(shè)d(x)=x2-x+m-1,對(duì)稱軸為x=$\frac{1}{2}$∈(0,1),
即有$\left\{\begin{array}{l}{△=1-4(m-1)>0}\\{d(0)=m-1>0}\\{d(1)=m-1>0}\end{array}\right.$,解得1<m<$\frac{5}{4}$.
故m的取值范圍是(1,$\frac{5}{4}$).

點(diǎn)評(píng) 本題考查函數(shù)的性質(zhì)和運(yùn)用,考查函數(shù)的單調(diào)性的運(yùn)用和不等式恒成立問(wèn)題的解法,同時(shí)考查函數(shù)和方程的轉(zhuǎn)化思想的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某校按字母A到Z的順序給班級(jí)編號(hào).按班級(jí)編號(hào)加01、02、03…給每位學(xué)生按順序定學(xué)號(hào).若A-K班級(jí)人數(shù)從15人起每班遞增1名.之后每班按編號(hào)順序遞減2名.求第256名學(xué)生的學(xué)號(hào)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知正實(shí)數(shù)a,b滿足$\frac{asin\frac{π}{5}+bcos\frac{π}{5}}{acos\frac{π}{5}-bsin\frac{π}{5}}$=tan$\frac{8π}{15}$,則$\frac{a}$的值等于$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.等差數(shù)列{an}的前n項(xiàng)和為Sn,若m>1,m∈N*,且${a_{m-1}}+{a_{m+1}}={a_m}^2\;,\;{S_{2m-1}}=58$,則m=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=21-x(x≥1)的值域?yàn)椋ā 。?table class="qanwser">A.[1,+∞)B.(-∞,1]C.(0,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=2bn-2;數(shù)列{an}為等差數(shù)列,且a5=14,a7=20.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Rn;
(3)若cn=an•bn,Tn為數(shù)列{cn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)f(x)是定義在R上的奇函數(shù),且在[0,+∞)上單調(diào)遞增,則f(-3),f(-4)的大小關(guān)系是(  )
A.f (-3)>f (-4)B.f (-3)<f (-4)C.f (-3)=f (-4)D.無(wú)法比較

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若$\int_1^2{({x-a})}dx=\int_0^{\frac{3π}{4}}{cos2xdx}$,則a等于( 。
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.一個(gè)正方體內(nèi)接于半徑為R的球,則該正方體的體積是( 。
A.2$\sqrt{2}$R3B.$\frac{4}{3}$πR3C.$\frac{8}{9}$$\sqrt{3}$R3D.$\frac{\sqrt{3}}{9}$R3

查看答案和解析>>

同步練習(xí)冊(cè)答案