如果f(cosx)=cos2x,那么f(sin30°)的值為
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件將f(sin30°)轉(zhuǎn)化為f(cos60°)即可求值.
解答: 解:∵f(sin30°)=f(cos60°)且f(cosx)=cos2x,
∴f(sin30°)=f(cos60°)=cos(2×60°)=cos120°=-
1
2

故答案為:-
1
2
點(diǎn)評:本題主要考查函數(shù)值的計(jì)算,將條件進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵,本題也可先求出f(x)的表達(dá)式,然后代入進(jìn)行求值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知半徑為2,圓心在直線y=-x+2上的圓C.
(Ⅰ)當(dāng)圓C經(jīng)過點(diǎn)A(2,2)且與y軸相切時(shí),求圓C的方程;
(Ⅱ)已知E(1,1),F(xiàn)(1,-3),若圓C上存在點(diǎn)Q,使|QF|2-|QE|2=32,求圓心的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,1),
b
=(2,-3),若k
a
-2
b
a
垂直,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心為I的△ABC的內(nèi)切圓分別切邊AC、AB于點(diǎn)E、F.設(shè)M為線段EF上一點(diǎn),證明:△MAB與△MAC面積相等的充分必要條件是MI⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
,
b
,
c
滿足
a
+
b
+
c
=
0
,(
a
-
b
)⊥
c
,
a
b
.若|
a
|=1,則|
a
|2+|
b
|2+|
c
|2的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果|
a
|=5,|
b
|=9 且
a
b
方向相反,那么
a
=
 
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線y=k(x+3)與拋物線y=ax2交于A(x1,y1)和B(x2,y2)兩點(diǎn),則
1
x1
+
1
x2
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a),其中a≤b≤c,對于下列結(jié)論:①f(b)≤0; ②若b=
a+c
2
,則?x∈R,f(x)≥f(b);③若b≤
a+c
2
,則f(a)≤f(c);④f(a)=f(c)成立充要條件為b=0.其中正確的是
 
.(請?zhí)顚懶蛱枺?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(-30°)=( 。
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

同步練習(xí)冊答案