【題目】某大型工廠有臺大型機器,在個月中,臺機器至多出現(xiàn)次故障,且每臺機器是否出現(xiàn)故障是相互獨立的,出現(xiàn)故障時需名工人進行維修.每臺機器出現(xiàn)故障的概率為.已知名工人每月只有維修臺機器的能力,每臺機器不出現(xiàn)故障或出現(xiàn)故障時有工人維修,就能使該廠獲得萬元的利潤,否則將虧損萬元.該工廠每月需支付給每名維修工人萬元的工資.

(1)若每臺機器在當月不出現(xiàn)故障或出現(xiàn)故障時有工人進行維修,則稱工廠能正常運行.若該廠只有名維修工人,求工廠每月能正常運行的概率;

(2)已知該廠現(xiàn)有名維修工人.

(。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學期望;

(ⅱ)以工廠每月獲利的數(shù)學期望為決策依據(jù),試問該廠是否應再招聘名維修工人?

【答案】(1);(2)(ⅰ);(ⅱ)不應該.

【解析】

(1)根據(jù)相互獨立事件的概率公式計算出事故機器不超過臺的概率即可;

(2)(i)求出的可能取值及其對應的概率,得出的分布列和數(shù)學期望;

(ⅱ)求出有名維修工人時的工廠利潤,得出結(jié)論.

解:(1)因為該工廠只有名維修工人,故要使工廠正常運行,最多只有臺大型機器出現(xiàn)故障.

∴該工廠正常運行的概率為:

2)(i的可能取值有,

,

的分布列為:

X

31

44

P

(ⅱ)若工廠再招聘一名維修工人,則工廠一定能正常運行,

工廠所獲利潤為萬元,

因為

∴該廠不應該再招聘名維修工人.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以為極點,軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數(shù)方程為,( 為參數(shù)).直線與曲線分別交于、兩點.

(1)寫出曲線的直角坐標方程和直線的普通方程;

(2)若點的直角坐標為,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,游客從景點下山至有兩種路徑:一種是從沿直線步行到,另一種是先從乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從下山,甲沿勻速步行,速度為米/分鐘.在甲出發(fā)分鐘后,乙從乘纜車到,在處停留分鐘后,再從勻速步行到.已知纜車從分鐘, 長為米,若,.為使兩位游客在處互相等待的時間不超過分鐘,則乙步行的速度(米/分鐘)的取值范圍是 __________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于以,為公共焦點的橢圓和雙曲線,設是它們的一個公共點,,分別為它們的離心率.,則的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】地球海洋面積遠遠大于陸地面積,隨著社會的發(fā)展,科技的進步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟利益,還擁有著深遠的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的68日確定為“世界海洋日”.201968日,某大學的行政主管部門從該大學隨機抽取100名大學生進行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組[6570),第二組[70,75),第二組[7580),第四組[8085),第五組[85,90],得到頻率分布直方圖如下圖:

1)求實數(shù)的值;

2)若從第四組、第五組的學生中按組用分層抽樣的方法抽取6名學生組成中國海洋實地考察小隊,出發(fā)前,用簡單隨機抽樣方法從6人中抽取2人作為正、副隊長,列舉出所有的基本事件并求“抽取的2人為不同組”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)求經(jīng)過點,且離心率為的橢圓的標準方程;

2)已知雙曲線與橢圓有相同的焦點,且過點,求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù))。在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為。

1)求直線的普通方程和圓的直角坐標方程;

2)設圓與直線交于,兩點,若點的坐標為,求。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知是半圓的直徑,是將半圓圓周四等分的三個分點

(1)從這5個點中任取3個點,求這3個點組成直角三角形的概率;

(2)在半圓內(nèi)任取一點,求的面積大于的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在寬為的路邊安裝路燈,燈柱高為,燈桿是半徑為的圓的一段劣。窡舨捎缅F形燈罩,燈罩頂到路面的距離為,到燈柱所在直線的距離為.設為燈罩軸線與路面的交點,圓心在線段上.

(1)當為何值時,點恰好在路面中線上?

(2)記圓心在路面上的射影為,且在線段上,求的最大值.

查看答案和解析>>

同步練習冊答案