分析 (1)由奇函數(shù)的定義,可得x<0,-x>0,f(x)=-f(-x),即可得到所求f(x)的解析式;
(2)由題意可得a•3x-(3x+$\frac{1}{{3}^{x}}$-4)≤0,即有a≤($\frac{1}{{3}^{x}}$)2-4•$\frac{1}{{3}^{x}}$+1恒成立,運(yùn)用換元法和指數(shù)函數(shù)的單調(diào)性和二次函數(shù)的最值求法,可得右邊函數(shù)的最小值,進(jìn)而得到a的范圍.
解答 解:(1)當(dāng)x=0時(shí),f(0)=0;
當(dāng)x<0時(shí),-x>0,f(-x)=-x-$\frac{1}{x}$-4,
又f(-x)=-f(x),可得f(x)=x+$\frac{1}{x}$+4.
則f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x}+4,x<0}\\{0,x=0}\\{x+\frac{1}{x}-4,x>0}\end{array}\right.$;
(2)當(dāng)x∈[-1,1]時(shí),不等式a•3x-f(3x)≤0恒成立,
由3x>0,即為a•3x-(3x+$\frac{1}{{3}^{x}}$-4)≤0,
即有a≤($\frac{1}{{3}^{x}}$)2-4•$\frac{1}{{3}^{x}}$+1恒成立,
令t=$\frac{1}{{3}^{x}}$($\frac{1}{3}$≤t≤3),則a≤t2-4t+1,
由g(t)=t2-4t+1=(t-2)2-3,
t=2∈[$\frac{1}{3}$,3],可得g(t)的最小值為-3,
則a≤-3.
點(diǎn)評(píng) 本題考查函數(shù)的解析式的求法,注意運(yùn)用奇函數(shù)的定義,考查不等式恒成立問(wèn)題的解法,注意運(yùn)用參數(shù)分離和函數(shù)的單調(diào)性,以及二次函數(shù)的最值的求法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2<a≤0 | B. | 0≤a<2 | C. | -2<a<2 | D. | -2≤a≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若數(shù)列{an}的前n項(xiàng)和為Sn,Sn=n2+n+1,則{an}為的等差數(shù)列 | |
B. | 若數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2n-2,則{an}為等比數(shù)列 | |
C. | 非零實(shí)數(shù)a,b,c不全相等,若a,b,c成等差數(shù)列,則$\frac{1}{a}$,$\frac{1}$,$\frac{1}{c}$可能構(gòu)成等差數(shù)列 | |
D. | 非零實(shí)數(shù)a,b,c不全相等,若a,b,c成等比數(shù)列,則$\frac{1}{a}$,$\frac{1}$,$\frac{1}{c}$一定構(gòu)成等比數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com