【題目】已知圓 和拋物線 , 為坐標原點.

(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;

(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線兩點,若直線的斜率為,求點的坐標.

【答案】(1);(2)

【解析】試題分析: 直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點,且滿足,只需數(shù)量積為0,要聯(lián)立方程組設而不求,利用坐標關系及根與系數(shù)關系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標滿足的要求,再利用兩直線與圓相切,求出點的坐標.

試題解析:(1)解:設, , ,由和圓相切,得

消去,并整理得,

,

,得,即

,

(舍).

時, ,故直線的方程為

(2)設, , ,則

,由直線和圓相切,得,

,同理可得:

是方程的兩根,故

,故

同理,則,即

,解

時, ;當時,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,OAB是一塊半徑為1,圓心角為 的扇形空地.現(xiàn)決定在此空地上修建一個矩形的花壇CDEF,其中動點C在扇形的弧 上,記∠COA=θ.
(Ⅰ)寫出矩形CDEF的面積S與角θ之間的函數(shù)關系式;
(Ⅱ)當角θ取何值時,矩形CDEF的面積最大?并求出這個最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (a是不為0的常數(shù)),當x∈[﹣2,2]時,函數(shù)f(x)的最大值與最小值的和為(
A.a+3
B.6
C.2
D.3﹣a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設點P的坐標為(x﹣3,y﹣2).
(1)在一個盒子中,放有標號為1,2,3的三張卡片,現(xiàn)在從盒子中隨機取出一張卡片,記下標號后把卡片放回盒中,再從盒子中隨機取出一張卡片記下標號,記先后兩次抽取卡片的標號分別為x、y,求點P在第二象限的概率;
(2)若利用計算機隨機在區(qū)間[0,3]上先后取兩個數(shù)分別記為x、y,求點P在第三象限的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,直四棱柱ABCD﹣A1B1C1D1內(nèi)接于半徑為 的半球O,四邊形ABCD為正方形,則該四棱柱的體積最大時,AB的長是(
A.1
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】12分)為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2)

1)假設生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在(μ–3σ,μ+3σ)之外的零件數(shù),求P(X1)X的數(shù)學期望;

2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ–3σ,μ+3σ)之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當天的生產(chǎn)過程進行檢查.

)試說明上述監(jiān)控生產(chǎn)過程方法的合理性;

)下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得,其中xi為抽取的第i個零件的尺寸,i=1,2,,16

用樣本平均數(shù)作為μ的估計值,用樣本標準差s作為σ的估計值,利用估計值判斷是否需對當天的生產(chǎn)過程進行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計μσ(精確到0.01).

附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ–3σ<Z<μ+3σ)=0.997 4,0.997 4160.959 2,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形, 且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1

(1)求證:AB∥平面PCD;
(2)求證:BC⊥平面PAC;
(3)若M是PC的中點,求三棱錐C﹣MAD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD是平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB= ,EF=1,BC= ,且M是BD的中點..
(1)求證:EM∥平面ADF;
(2)求直線DF和平面ABCD所成角的正切值;
(3)求二面角D﹣AF﹣B的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, 平面,已知為線段的中點.

(I)求證: 平面;

(II)求平面與平面所成銳二面角的余弦角.

查看答案和解析>>

同步練習冊答案