某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( 。
A、f(x)=lnx
B、f(x)=
1
x
C、f(x)=ex
D、f(x)=x3
考點:程序框圖
專題:常規(guī)題型,算法和程序框圖
分析:根據(jù)程序框圖,輸出的函數(shù)是存在零點的奇函數(shù),利用排除法可以選出答案.
解答: 解:根據(jù)程序框圖,輸出的函數(shù)是存在零點的奇函數(shù)
A、C是非奇非偶函數(shù),不滿足;
C是奇函數(shù),但沒有零點,不滿足;
只有選項D中的函數(shù)是存在零點的奇函數(shù).
故選D.
點評:本題通過程序考查了函數(shù)的奇偶性和函數(shù)零點的判斷,解決題目的關(guān)鍵是通過程序框圖判斷出輸出的函數(shù)是存在零點的奇函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知斜三棱柱的三視圖如圖,該斜三棱柱的體積為(  )
A、2
B、4
C、
4
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,M={x|x2+3x<0},N={x|y=
-x-1
},則圖中陰影部分表示的集合為(  )
A、{x|x>-1}
B、{x|-3<x<0}
C、{x|x≤-3}
D、{x|-1<x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+mx+n(m,n∈R)的值域為[0,+∞),若關(guān)于x的不等式f(x)<a-1的解集為(m-3,m+2),則實數(shù)a的值是( 。
A、
21
4
B、
25
4
C、6
D、
29
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足
1+z
1-z
=i(i為虛數(shù)單位),則z的虛部為( 。
A、1B、-iC、iD、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大。
(Ⅱ)若a=6,求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,上頂點為A,在x軸負半軸上有一點B,滿足
BF1
=
F1F2
,且
AB
AF2
=0.
(1)若過A、B、F2三點的圓恰好與直線l1:x-
3
y-3=0相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點F2作斜率為k的直線l與橢圓C交于M、N兩點,在x軸上是否存在點P(m,0)使得以PM、PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍,如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項等比數(shù)列{an}的前n項和為Sn,公比為q,若
S3
S5-S2
=
1
4
,且10是a2,a4的等差中項.
(1)求{an}的通項公式.
(2)若bn=2log2an,求{(-1)nbn2}的前2n項的和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點M(1,
3
2
),且其右焦點與拋物線C2:y2=4x的焦點F重合,過點F且與坐標(biāo)軸不垂直的直線與橢圓交于P,Q兩點.
(1)求橢圓C1的方程;
(2)設(shè)O為坐標(biāo)原點,線段OF上是否存在點N(n,0),使得
QP
NP
=
PQ
NQ
?若存在,求出n的取值范圍;若不存在,說明理由;
(3)過點P0(4,0)且不垂直于x軸的直線與橢圓交于A,B兩點,點B關(guān)于x軸的對稱點為E,試證明:直線AE過定點.

查看答案和解析>>

同步練習(xí)冊答案