4.設(shè)f(x)是定義在R上的偶函數(shù),對x∈R,都有f(x-2)=f(x+2),且當(dāng)x∈[-2,0]時,f(x)=($\frac{1}{2}$)x-1,若在區(qū)間[-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同實根,則a的取值范圍是( 。
A.$\root{3}{4}$<a<2B.1<a<2C.$\root{3}{4}$<a<$\root{6}{9}$D.1<a<$\root{3}{7}$

分析 由已知中可以得到函數(shù)f(x)是一個周期函數(shù),且周期為4,將方程f(x)-logax+2=0恰有3個不同的實數(shù)解,轉(zhuǎn)化為函數(shù)f(x)的與函數(shù)y=-logax+2的圖象恰有3個不同的交點,數(shù)形結(jié)合即可得到實數(shù)a的取值范圍.

解答 解:∵對于任意的x∈R,都有f(x-2)=f(2+x),∴函數(shù)f(x)是一個周期函數(shù),且T=4.
又∵當(dāng)x∈[-2,0]時,f(x)=($\frac{1}{2}$)x-1,且函數(shù)f(x)是定義在R上的偶函數(shù),
若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0恰有3個不同的實數(shù)解,
則函數(shù)y=f(x)與y=loga(x+2)在區(qū)間(-2,6]上有三個不同的交點,如下圖所示:

又f(-2)=f(2)=3,
則對于函數(shù)y=loga(x+2),由題意可得,當(dāng)x=2時的函數(shù)值小于3,當(dāng)x=6時的函數(shù)值大于3,
即loga4<3,且loga8>3,由此解得:$\root{3}{4}$<a<2,
故選:A.

點評 本題考查的知識點是根的存在性及根的個數(shù)判斷,指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質(zhì),其中根據(jù)方程的解與函數(shù)的零點之間的關(guān)系,將方程根的問題轉(zhuǎn)化為函數(shù)零點問題,是解答本題的關(guān)鍵,體現(xiàn)了轉(zhuǎn)化和數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=ax-x3,對區(qū)間(0,1)上的任意x1,x2,且x1<x2,都有f(x1)-f(x2)<x1-x2成立,則實數(shù)a的取值范圍為( 。
A.(0,1)B.[4,+∞)C.(0,4]D.(1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知{an}是等比數(shù)列,且a3a5a7a9a11=243,則$\frac{{{a}_{10}}^{2}}{{a}_{13}}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)復(fù)數(shù)z滿足i3=z(1-i)(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.表面積為$\frac{{4\sqrt{3}}}{3}$的正四面體的各個頂點都在同一個球面上,則此球的體積為( 。
A.$\frac{{\sqrt{2}}}{3}π$B.$\frac{1}{3}π$C.$\frac{2}{3}π$D.$\frac{{2\sqrt{2}}}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a=log0.53,b=20.7,c=0.90.8,則a、b、c的大小關(guān)系是( 。
A.c<b<aB.a<c<bC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)是定義在區(qū)間(0,+∞)上的函數(shù),其導(dǎo)函數(shù)為f'(x),且不等式xf'(x)<2f(x)恒成立,則( 。
A.4f(1)<f(2)B.4f(1)>f(2)C.f(1)<4f(2)D.f(1)<2f'(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.?dāng)?shù)列{an}中,如果an=49-2n,則Sn取最大值時,n等于( 。
A.23B.24C.25D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解不等式:
(1)x2-2x-3>0    
(2)$\frac{x-2}{x-1}$≤0.

查看答案和解析>>

同步練習(xí)冊答案