精英家教網 > 高中數學 > 題目詳情
已知定義R在的函數f(x)=x|x-a|,其中a∈R,有如下判斷,
①無論a取任意實數,函數f(x)的圖象均過原點;
②若f(x)是奇函數,則a=0;
③當a>2時,函數f(x)在區(qū)間(-∞,2]上的解析式是f(x)=-x2+ax;
④當a=1時,函數f(x)有最大值
1
4

⑤當a=2時,若函數y=f(x)-m有3個零點,則0<m<1.
其中正確的是
 
考點:奇偶函數圖象的對稱性,函數的最值及其幾何意義
專題:函數的性質及應用
分析:根據五個小題的內容可知,該題分別考查了函數的解析式、奇偶性、最值、零點等概念和性質,可分別用相關概念和性質求解,注意數形結合.
解答: 解:∵函數f(x)=x|x-a|,其中a∈R,
對于①,f(0)=0恒成立,∴函數f(x)的圖象均過原點,故①正確;
對于②,若f(x)是奇函數,則f(-x)=-f(x)恒成立,即-x|-x-a|=-x|x-a|,即x|x+a|=x|x-a|恒成立,∴-a=a,∴a=0,故②正確;
對于③,若a>2,當x≤2時,則f(x)=x|x-a|=-x(x-a)=-x2+ax,故③正確;
對于④,當a=1時,f(x)=x|x-1|,取x=2,則f(2)=2>
1
4
,故④不正確;
對于⑤,當a=2時,y=f(x)-m=x|x-2|-m,
當x≥2時,f(x)=x2-2x-m=(x-1)2-m-1,此時該函數在[2,+∞)上是增函數,∴當x≥2時,f(x)≥f(2)=-m;
當x<2時,f(x)=-(x-1)2+1-m,此時該函數在(-∞,1)上是增函數,在[1,2)上是減函數,∴當x<2時,f(x)≤f(1)=1-m;
結合圖象可知,要使原函數有三個零點只需
-m<0
1-m>0
,解得0<m<1,故⑤正確.
故答案為:①②③⑤
點評:實際上,這道題經過去絕對值符號后,主要是考查了二次函數的圖象與性質,對于二次函數的圖象和性質是高考的重點與熱點,應引起足夠的重視.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

一個袋中裝有四個除編號外完全相同的小球,小球的編號分別為1,2,3,4.先從袋中隨機取一個球,設該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,設該球的編號為n,用(m,n)表示基本事件.
(1)求試驗的基本事件的個數;
(2)求事件m+n≤4的概率;
(3)求事件n<m+2的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知關于x的不等式ax-b<0的解集是(3,+∞),則關于x的不等式
ax+b
x-2
>0的解集是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

數列{an}中,a1=2,an+1=
an+3(n為奇數)
3an(n為偶數)
,則a6=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

經過坐標原點且與l:4x+y-2=0平行的直線的方程是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

集合A={2,3},B={1,2,3},從A,B中各任意取一個數,則這兩數之和等于4的概率是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

計算:7+77+777+7777+…+
77…7
n個7
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

執(zhí)行如圖所示的算法,輸出的結果S=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),且其一條漸近線經過點(2,4),則雙曲線的離心率為( 。
A、
2
B、
3
C、
5
D、
7

查看答案和解析>>

同步練習冊答案