已知向量
m
=(cos θ,sin θ)
n
=(
2
-sin θ,cos θ)
,θ∈(π,2π),且|
m
+
n
|=
8
2
5
,求cos(
θ
2
+
π
8
)
的值.
考點:兩角和與差的余弦函數(shù),向量的模,同角三角函數(shù)基本關(guān)系的運用
專題:綜合題,三角函數(shù)的圖像與性質(zhì)
分析:由題意可得
m
+
n
的坐標,由模長可得
2
(cosθ-sinθ)=
14
25
,由三角函數(shù)公式可得cos(θ+
π
4
)=
7
25
,結(jié)合角的范圍可得cos(
θ
2
+
π
8
)
<0,由二倍角公式可得2cos2(
θ
2
+
π
8
)
-1=
7
25
,解方程可得.
解答: 解:∵
m
=(cos θ,sin θ)
n
=(
2
-sin θ,cos θ)
,
m
+
n
=(
2
+cosθ-sinθ,sinθ+cosθ)
|
m
+
n
|=
8
2
5
,∴|
m
+
n
|2=
128
25

∴(
2
+cosθ-sinθ)2+(sinθ+cosθ)2=
128
25
,
可得2+2
2
(cosθ-sinθ)+(cosθ-sinθ)2+(sinθ+cosθ)2=
128
25
,
展開化簡可得
2
(cosθ-sinθ)=
14
25
,
即2cos(θ+
π
4
)=
14
25
,
解得cos(θ+
π
4
)=
7
25
,
∵θ∈(π,2π),∴
θ
2
+
π
8
∈(
8
8
)∴cos(
θ
2
+
π
8
)
<0
由二倍角公式可得cos(θ+
π
4
)=2cos2(
θ
2
+
π
8
)
-1=
7
25
,
解得cos(
θ
2
+
π
8
)
=-
4
5
點評:本題考查三角函數(shù)的公式,涉及同角三角函數(shù)的基本關(guān)系以及向量的模長公式,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

“x≥1”是“x+
1
x
≥2”( 。
A、充分不必要條件
B、必要不充分條件
C、充分且必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某數(shù)學興趣小組有男女生各5名.以下莖葉圖記錄了該小組同學在一次數(shù)學測試中的成績(單位:分).已知男生數(shù)據(jù)的中位數(shù)為125,女生數(shù)據(jù)的平均數(shù)為126.8.
(1)求x,y的值;
(2)現(xiàn)從成績高于125分的同學中隨機抽取兩名同學,求抽取的兩名同學恰好為一男一女的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次招聘會上,應(yīng)聘這小李被甲、乙兩家公司同時意向錄。坠窘o出的工資標準:第一年的年薪為4.2萬元,以后每年的年薪比上一年增加6000元;乙公司給出的工資標準:第一年的年薪為4.8萬元,以后每年的年薪比上一年增加8%.
(Ⅰ)若小李在乙公司連續(xù)工作5年,則他在第5年的年薪是多少萬元?
(Ⅱ)為了吸引小李的加盟,乙公司決定在原有工資的基礎(chǔ)上每年固定增加交通補貼7200元.那么小李在甲公司至少要連續(xù)工作幾年,他的工資總收入才不低于在乙公司工作10年的總收入?(參考數(shù)據(jù):1.084≈1.4,1.085≈1.5,1.0810≈2.2,1.0511≈2.3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)試把三進制10212(3)轉(zhuǎn)化為十進制.
(2)試把十進制1234轉(zhuǎn)化為七進制.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos(
π
4
x-
π
3
)+2cos2
π
8
x.
(Ⅰ)求f(x)的最小正周期及最值;
(Ⅱ)在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,若f(a)=1+
3
2
,a∈(0,5),A=
π
3
,b=1,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市教育主管部門為了弘揚民族文化,在全市各中學開展?jié)h字聽寫大賽,某學校經(jīng)過七輪選拔,最后選出甲乙兩名選手代表本校參加市里比賽,甲乙兩名選手七輪比賽得分情況如下表所示:
86 94 89 88 91 90 92
88 89 90 91 93 92 87
(1)根據(jù)表中的數(shù)據(jù)分析,哪位選手成績更為穩(wěn)定?
(2)從甲選手的7次成績中隨機抽取兩次成績,求抽出的兩次成績的分數(shù)差值至少是3分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)k∈R,且k≠0,e為自然對數(shù)的底數(shù),函數(shù)f(x)=
k•ex
ex+1
,g(x)=f(x)-x.
(1)如果函數(shù)g(x)在R上為減函數(shù),求k的取值范圍;
(2)如果k∈(0,4],求證:方程g(x)=0有且有一個根x=x0;且當x>x0時,有x>f(f(x))成立;
(3)定義:①對于閉區(qū)間[s,t],稱差值t-s為區(qū)間[s,t]的長度;②對于函數(shù)g(x),如果對任意x1,x2∈[s,t]⊆D(D為函數(shù)g(x)的定義域),記h=|g(x2)-g(x1)|,h的最大值稱為函數(shù)g(x)在區(qū)間[s,t]上的“身高”.問:如果k∈(0,4],函數(shù)g(x)在哪個長度為2的閉區(qū)間上“身高”最“矮”?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:如果數(shù)列{an}的任意連續(xù)三項均能構(gòu)成一個三角形的三邊長,則稱{an}為“三角形”數(shù)列.對于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N*).
(Ⅰ)已知數(shù)列{cn}的首項為2010,Sn是數(shù)列{cn}的前n項和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(Ⅱ)已知{an}是首項為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍.

查看答案和解析>>

同步練習冊答案