已知兩直線y=2x與x+y+a=0相交于點A(1,b),則點A到直線ax+by+3=0的距離為( 。
A、
2
13
13
B、
4
13
13
C、4
D、
18
13
13
考點:點到直線的距離公式,兩條直線的交點坐標(biāo)
專題:直線與圓
分析:根據(jù)條件求出a,b,根據(jù)點到直線的距離即可求解.
解答: 解:∵兩直線y=2x與x+y+a=0相交于點A(1,b),
∴b=2且1+b+a=0,
解得a=-3,b=2,
則A(1,2),直線方程為-3x+2y+3=0,
則點到直線的距離d=
|-3+4+3|
(-3)2+22
=
4
13
=
4
13
13
,
故選:B
點評:本題主要考查直線交點坐標(biāo)的應(yīng)用,利用點到直線的距離公式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{ncos(nπ)}的前n項和為Sn,(n∈N*),則S2015=(  )
A、2014B、2015
C、-1008D、-1007

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖表示的算法的輸出結(jié)果是( 。
A、-2
B、
1
2
C、3
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從裝有4個紅球、2個白球的袋中任取3個球,則所取的3個球中至少有1個白球的概率為( 。
A、
1
5
B、
4
5
C、
9
10
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
4x
-
λ
2x-1
+3(-1≤x≤2).
(1)若λ=
3
2
時,求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)的最小值是1,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x+ay-1=0與4x-2y+3=0垂直,則二項式(ax-1)5的展開式中x2的系數(shù)為( 。
A、-40B、-10
C、10D、40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項都是正數(shù)的等差數(shù)列{an},Sn是它的前n項和,若a2+a3+a7=a24,則a5•S5的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
|x|
的圖象在第一象限的一支曲線上有一點A(a,c),點B(b,c+1)在該函數(shù)圖象的另外一支上,則關(guān)于一元二次方程ax2+bx+c=0的兩根x1,x2判斷正確的是( 。
A、x1+x2>1,x1•x2>0
B、x1+x2<0,x1•x2>0
C、0<x1+x2<1,x1•x2>0
D、x1+x2與x1•x2的符號都不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b為正數(shù)且a>b,則a2+
1
ab
+
1
a(a-b)
的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案