兩人相約在7:30到8:00之間相遇,早到者應(yīng)等遲到者10分鐘方可離去,如果兩人出發(fā)是各自獨(dú)立的,在7:30到8:00之間的任何時(shí)刻是等可能的,問兩人相遇的可能性有多大         .

試題分析:由題意知本題是一個(gè)幾何概型,試驗(yàn)包含的所有事件是Ω={(x,y)|0<x<1 ,0<y<1},做出事件對(duì)應(yīng)的集合表示的面積,寫出滿足條件的事件是A={(x,y)|0<x<1,0<y<1,|x-y|< },算出事件對(duì)應(yīng)的集合表示的面積,根據(jù)幾何概型概率公式得到結(jié)果.解:設(shè)兩人到達(dá)約會(huì)地點(diǎn)的時(shí)刻分別為x,y,依題意,必須滿足|x-y|≤才能相遇.我們把他們到達(dá)的時(shí)刻分別作為橫坐標(biāo)和縱坐標(biāo),于是兩人到達(dá)的時(shí)刻均勻地分布在一個(gè)邊長為1的正方形Ⅰ內(nèi),如圖所示,而相遇現(xiàn)象則發(fā)生在陰影區(qū)域G內(nèi),即甲、乙兩人的到達(dá)時(shí)刻(x,y)滿足|x-y|≤,所以兩人相遇的概率為區(qū)域G與區(qū)域Ⅰ的面積之比: 
點(diǎn)評(píng):本題是一個(gè)幾何概型,對(duì)于這樣的問題,一般要通過把試驗(yàn)發(fā)生包含的事件同集合結(jié)合起來,根據(jù)集合對(duì)應(yīng)的圖形做出面積,用面積的比值得到結(jié)果
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在區(qū)間內(nèi)隨機(jī)取兩個(gè)數(shù)分別記為,則使得函數(shù)有零點(diǎn)的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在區(qū)間內(nèi)任取兩個(gè)數(shù),則使方程的兩個(gè)根分別作為橢圓與雙曲線的離心率的概率為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

向面積為S的△ABC內(nèi)任投一點(diǎn)P,則△PBC的面積小于的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

內(nèi)一點(diǎn),且,在內(nèi)隨機(jī)撒一顆豆子,則此豆子落在內(nèi)的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知集合, ,在集合中任意取一個(gè)元素,則的概率是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

向等腰直角三角形內(nèi)任意投一點(diǎn), 則小于的概率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知實(shí)數(shù)x,y滿足的圖象與坐標(biāo)軸所
圍成的封閉圖形的內(nèi)部的概率為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在邊長為1的正方形ABCD中任取一點(diǎn)P,則的面積大于的概率是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案