一個(gè)口袋中裝有大小形狀完全相同的紅色球1個(gè)、黃色球2個(gè)、藍(lán)色球n(n∈N*)個(gè).現(xiàn)進(jìn)行從口袋中摸球的游戲:摸到紅球得1分、摸到黃球得2分、摸到藍(lán)球得3分.若從這個(gè)口袋中隨機(jī)地摸出2個(gè)球,恰有一個(gè)是黃色球的概率是
8
15

(1)求n的值;
(2)從口袋中隨機(jī)摸出2個(gè)球,設(shè)ξ表示所摸2球的得分之和,求ξ的分布列和數(shù)學(xué)期望Eξ.
考點(diǎn):離散型隨機(jī)變量的期望與方差,相互獨(dú)立事件的概率乘法公式
專題:概率與統(tǒng)計(jì)
分析:(1)由題設(shè)知
C
1
2
•C
1
n+1
C
2
n+3
=
8
15
,由此能求出n.
(2)由題意知ξ取值為3,4,5,6.分別求出相應(yīng)的概率,由此能求出ξ的分布列和數(shù)學(xué)期望.
解答: 解:(1)由題設(shè)知
C
1
2
•C
1
n+1
C
2
n+3
=
8
15

解得n=3.…(4分)
(2)ξ取值為3,4,5,6.
P(ξ=3)=
C
1
1
C
1
2
C
2
6
=
2
15
,
P(ξ=4)=
C
1
1
C
1
3
C
2
6
+
C
2
2
C
2
6
=
4
15

P(ξ=5)=
C
1
2
C
1
3
C
2
6
=
2
5
,
P(ξ=6)=
C
2
3
C
2
6
=
1
5
,…(8分)
∴ξ的分布列為:
ξ 3 4 5 6
P
2
15
4
15
2
5
1
5
Eξ=3×
2
15
+4×
4
15
+5×
2
5
+6×
1
5
=
14
3
.…(10分)
點(diǎn)評:本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要注意排列組合知識的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)在(1,+∞)上是增函數(shù)的是( 。
A、y=-2x
B、y=log 
1
3
x
C、y=-(x-1)
D、y=|x-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos3φ,sin3φ),
b
=(cos(α-φ),sin(α-φ)),φ∈[0,
π
4
],
b
=x
a
(x>0).
(1)求|
a
|的取值范圍;
(2)設(shè)
3
cosα=y,求y與x的函數(shù)關(guān)系式y(tǒng)=f(x),并指出其定義域;
(3)設(shè)正項(xiàng)數(shù)列{an}滿足a1=1,an+1=f(an),求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=3,|
b
|=2,
a
b
的夾角為60°,
c
=3
a
+5
b
d
=m
a
-3
b

(1)當(dāng)m為何值時(shí),
c
d
垂直?
(2)當(dāng)m為何值時(shí),
c
d
共線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD為菱形,AB=1,AA1=
6
2
,∠ABC=60°.證明:BD1⊥平面AB1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-bx+2=0},問同時(shí)滿足B⊆A,C⊆A的實(shí)數(shù)a、b是否存在?若存在,求出a、b所有的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex
ex
,g(x)=mx-lnx-tm.
(1)求函數(shù)f(x)在x∈(0,+∞)上的值域;
(2)若m∈[
e
,e2],對?x1,x2∈(0,+∞),f(x1)≤g(x2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求證:AA1⊥平面ABC;
(2)求點(diǎn)A1到平面B1BCC1的距離;
(3)求二面角A1-BC1-B1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)校舉行定點(diǎn)投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒有投中得0分,假設(shè)每次投籃投中與否是相互獨(dú)立的.已知小明每次投籃投中的概率都是
1
3

(1)求小明在投籃過程中直到第三次才投中的概率;
(2)求小明在4次投籃后的總得分ξ的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案