精英家教網 > 高中數學 > 題目詳情
已知集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-bx+2=0},問同時滿足B⊆A,C⊆A的實數a、b是否存在?若存在,求出a、b所有的值;若不存在,請說明理由.
考點:集合的包含關系判斷及應用
專題:集合
分析:先將集合A、B進行化簡,可以發(fā)現1是公共根,若B⊆A,則只需判斷a-1是否等于1,或2求出a的值;而若C⊆A,則要從C=Φ開始判斷,然后再分B是單元素集及雙元素集進行討論.
解答: 解:由已知,A={1,2},由x2-ax+(a-1)=0得(x-1)[x-(a-1)]=0,
∵B⊆A,∴a-1=1,或a-1=2,
故a=2或a=3,
若C=Φ,則由△=b2-8<0得-2
2
<b<2
2
,
若C≠Φ,則由△=0得b=2
2
,此時B={
2
},不滿足題意,
當△>0時,應有C=A,此時b=1+2=3,
綜上,當a=2或a=3;-2
2
<b<2
2
或b=3時.a,b的值同時滿足B⊆A,C⊆A.
點評:這是一個以考查集合間的關系為載體,具體考查一元二次方程的解法以及根的個數的判斷問題;在判斷C⊆A時,勿忘C=Φ的情況.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知向量
a
=(m2,4),
b
=(1,1),則“
a
b
”是“m=2”的( 。
A、充分條件但非必要條件
B、必要條件但非充分條件
C、充分必要條件
D、非充分條件,也非必要條件

查看答案和解析>>

科目:高中數學 來源: 題型:

經市場調查,某商品在-個月內(按30天計算)的銷售量(單位:件)與銷售價格《單位:元)均為時間(單位:天)的函效,已知銷售量f(t)與時間t近似滿足函數關系:f(t)=36-t(0≤t≤30 t∈N),銷售價格g(x)與時間t的函數關系如圖所示.
(1)寫出該商品的日銷售額(單位:元》與時間t的函數關系;(注:日銷售額=日銷售量×當日價格)
(2)試判斷當月哪一天的銷售額最大,并求出其最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設a、b、c均為正實數,求證:三個數a+
1
b
,b+
1
c
,c+
1
a
中至少有一個不小于2.

查看答案和解析>>

科目:高中數學 來源: 題型:

一個口袋中裝有大小形狀完全相同的紅色球1個、黃色球2個、藍色球n(n∈N*)個.現進行從口袋中摸球的游戲:摸到紅球得1分、摸到黃球得2分、摸到藍球得3分.若從這個口袋中隨機地摸出2個球,恰有一個是黃色球的概率是
8
15

(1)求n的值;
(2)從口袋中隨機摸出2個球,設ξ表示所摸2球的得分之和,求ξ的分布列和數學期望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線x2=4y,直線l:y=x-2,F是拋物線的焦點.
(Ⅰ)在拋物線上求一點P,使點P到直線l的距離最小;
(Ⅱ)如圖,過點F作直線交拋物線于A、B兩點.
①若直線AB的傾斜角為135°,求弦AB的長度;
②若直線AO、BO分別交直線l于M,N兩點,求|MN|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知直線l的傾斜角是直線m:y=-
3
x+1的傾斜角的一半,求經過點P(2,2)且與直線l垂直的直線方程.
(2)已知直線l經過Q(3,-2)且在兩坐標軸上的截距相等,求l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知遞增數列{an}的前n項和為Sn,且滿足a1=1,4Sn-4n+1=an2.設bn=
1
anan+1
,n∈N*,且數列{bn}的前n項和為Tn
(1)求證:數列{an}為等差數列;
(2)試求所有的正整數m,使得
am2+am+12-am+22
amam+1
為整數;
(3)若對任意的n∈N*,不等式λTn<n+18(-1)n+1恒成立,求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在△ABC中,AB=AC=3,BC=2,B的平分線交過點A且與BC平行的線交于點D,求△ABD的面積.

查看答案和解析>>

同步練習冊答案