某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的體積為立方米,且.假設(shè)該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為千元,設(shè)該容器的建造費用為千元.

(Ⅰ)寫出關(guān)于的函數(shù)表達式,并求該函數(shù)的定義域;
(Ⅱ)求該容器的建造費用最小時的

(Ⅰ);(Ⅱ)當時,建造費用最小時時,建造費用最小時.

解析試題分析:(Ⅰ)由圓柱和球的體積的表達式,得到l和r的關(guān)系.再由圓柱和球的表面積公式建立關(guān)系式,將表達式中的l用r表示.并注意到寫定義域時,利用l≥2r,求出自變量r的范圍;(Ⅱ)用導數(shù)的知識解決,注意到定義域的限制,在區(qū)間(0,2]中,極值未必存在,將極值點在區(qū)間內(nèi)和在區(qū)間外進行分類討論.
試題解析:(I)設(shè)容器的容積為V,由題意知

由于因此                          .3分
所以建造費用
因此                       ..5分
(II)由(I)得
由于   
;所以          .7分
(1)當時,

所以是函數(shù)y的極小值點,也是最小值點。           .10分
(2)當時, 當函數(shù)單調(diào)遞減,
所以r=2是函數(shù)y的最小值點,
綜上所述,當時,建造費用最小時
時,建造費用最小時                13分
考點:1.函數(shù)解析式和定義域;2.函數(shù)模型的應用;3.函數(shù)最值的求法

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)交于兩點且,奇函數(shù),當時,都在取到最小值.
(1)求的解析式;
(2)若圖象恰有兩個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)設(shè)的定義域為A,求集合A;
(2)判斷函數(shù)在(1,+)上單調(diào)性,并用單調(diào)性的定義加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)的定義域為,并且滿足,且,當時,
(1).求的值;(3分)
(2).判斷函數(shù)的奇偶性;(3分)
(3).如果,求的取值范圍.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某地開發(fā)了一個旅游景點,第1年的游客約為100萬人,第2年的游客約為120萬人.某數(shù)學興趣小組綜合各種因素預測:①該景點每年的游客人數(shù)會逐年增加;②該景點每年的游客都達不到130萬人.該興趣小組想找一個函數(shù)來擬合該景點對外開放的第年與當年的游客人數(shù)(單位:萬人)之間的關(guān)系.
(1)根據(jù)上述兩點預測,請用數(shù)學語言描述函數(shù)所具有的性質(zhì);
(2)若=,試確定的值,并考察該函數(shù)是否符合上述兩點預測;
(3)若=,欲使得該函數(shù)符合上述兩點預測,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為奇函數(shù),且當時,.當時,的最大值為,最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷的單調(diào)性(不需證明);
(3)若,存在,使,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)定義域為的函數(shù)為實數(shù))。
(1)若是奇函數(shù),求的值;  
(2)當是奇函數(shù)時,證明對任何實數(shù)都有成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù), .
(1)若, 函數(shù) 在其定義域是增函數(shù),求的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)的最小值;
(3)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點,過線段的中點軸的垂線分別交、于點,問是否存在點,使處的切線與處的切線平行?若存在,求出的橫坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案