17.sin 20°cos10°+cos20°sin170°=( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

分析 利用誘導(dǎo)公式以及兩角和的正弦函數(shù)化簡(jiǎn)求解即可.

解答 解:sin 20°cos10°+cos20°sin170°
=sin 20°cos10°+cos20°sin10°
=sin30°
=$\frac{1}{2}$.
故選:D.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式以及兩角和的正弦函數(shù)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$tan({α-\frac{π}{4}})=3$,則$\frac{1}{sinαcosα}$的值為-$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知某三棱錐的三視圖是如圖所示的三個(gè)直角三角形,那么這個(gè)三棱錐最小的一個(gè)表面的面積是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)z=3x+5y,其中變量x和y滿足條件$\left\{{\begin{array}{l}{5x+3y≤15}\\{y≤x+1{\;}^{\;}}\\{x-5y≤3}\end{array}}\right.$,求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)z=2x+y,其中變量x和y滿足條件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,求z的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列四個(gè)說法:
①一個(gè)命題的逆命題為真,則它的逆否命題一定為真;
②若k>0,則方程x2+2x-k=0有實(shí)數(shù)根;
③“x>2”是“$\frac{1}{x}$<$\frac{1}{2}$”的充分不必要條件;
④設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分而不必要條件.
其中真命題的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若直線ax-by+1=0(a>0,b>0)被圓x2+y2+2x-4y+1=0截得的弦長(zhǎng)為4,則$\frac{2}{a}+\frac{1}$的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列各函數(shù)中,在(0,+∞)內(nèi)為增函數(shù)的是(  )
A.y=-2x+1B.y=-x2C.y=x-2D.y=2x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若f(cosx)=cos3x,那么f(sin70°)的值為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案