【題目】已知甲、乙兩個容器,甲容器容量為滿純酒精,乙容器容量為,其中裝有體積為的水(:單位: ).現(xiàn)將甲容器中的液體倒人乙容器中,直至甲容器中液體倒完或乙容器盛滿,攪拌使乙容器中兩種液體充分混合,再將乙容器中的液體倒人甲容器中直至倒?jié)M,攪拌使甲容器中液體充分混合,如此稱為一次操作,假設(shè)操作過程中溶液體積變化忽略不計.設(shè)經(jīng)過次操作之后,乙容器中含有純酒精單位: ),下列關(guān)于數(shù)列的說法正確的是( )

A. 時,數(shù)列有最大值

B. 設(shè),則數(shù)列為遞減數(shù)列

C. 對任意的,始終有

D. 對任意的,都有

【答案】D

【解析】趨于正無窮時,甲、乙兩容器濃度應(yīng)趨于相等,當時,顯然,當 時,甲容器有剩余,顯然,故D正確,A,B錯誤,對于C,可設(shè),則,此時,C錯誤.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)學院讀書協(xié)會欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如圖所示的頻率分布直方圖.該協(xié)會確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(Ⅰ)已知選取的是1月至6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;

(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(Ⅰ)中該協(xié)會所得線性回歸方程是否理想?

參考公式:回歸直線的方程,

其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)M={x|0≤x≤2},N={y|0≤y≤2},給出下列四個圖形:

其中,能表示從集合M到集合N的函數(shù)關(guān)系的個數(shù)是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位附近只有甲、乙兩個臨時停車場,它們各有個車位,為了方便市民停車,某互聯(lián)網(wǎng)停車公司對這兩個停車場,在某些固定時刻的剩余停車位進行記錄,如下表:

時間

停車場

甲停車場

乙停車場

如果表中某一時刻剩余停車位數(shù)低于該停車場總車位數(shù)的,那么當車主驅(qū)車抵達單位附近時,該公司將會向車主發(fā)出停車場飽和警報.

(1)假設(shè)某車主在以上六個時刻抵達單位附近的可能性相同,求他收到甲停車場飽和警報的概率;

(2)從這六個時刻中任選一個時刻,求甲停車場比乙停車場剩余車位數(shù)少的概率;

(3)當乙停車場發(fā)出飽和警報時,求甲停車場也發(fā)出飽和警報的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù).

(1)當時,試求的單調(diào)增區(qū)間;

(2)試求上的最大值;

(3)當時,求證:對于恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,底面為矩形, , .點在棱上,平面與棱交于點

(Ⅰ)求證: ;

(Ⅱ)求證:平面平面

(Ⅲ)若, , ,平面平面,求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一批材料可以建成100m長的圍墻,現(xiàn)用這些材料在一邊靠墻的地方圍成一塊封閉的矩形場地,中間隔成3個面積相等的小矩形(如圖),則圍成的矩形場地的最大總面積為(圍墻厚度忽略不計)m2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當時, 求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè) ,向量 =(cosα,sinα),
(1)證明:向量 垂直;
(2)當| |=| |時,求角α.

查看答案和解析>>

同步練習冊答案