10.設(shè)函數(shù)$f(x)={log_2}(\frac{1+ax}{1-x})$,若$f(\frac{1}{3})=1$
(1)求f(x)的解析式并判斷其奇偶性;
(2)當(dāng)x∈[-1,0)時,求f(3x)的值域;
(3)已知函數(shù)$g(x)={log_{\sqrt{2}}}\frac{k}{1-x}$,若存在$x∈[\frac{1}{2},\frac{2}{3}]$使不等式 f(x)>g(x)成立,求k的范圍.

分析 (1)利用函數(shù)與方程的關(guān)系,求出a,然后得到函數(shù)的解析式,即可判斷函數(shù)的奇偶性.
(2)通過函數(shù)的解析式以及定義域,求解函數(shù)的值域即可.
(3)$x∈[\frac{1}{2},\frac{2}{3}]$,求出f(x)的最大值,利用 f(x)max>g(x)max,求出k的范圍即可.

解答 解:(1)函數(shù)$f(x)={log_2}(\frac{1+ax}{1-x})$,$f(\frac{1}{3})=1$,可得$1=lo{g}_{2}(\frac{1+\frac{1}{3}a}{1-\frac{1}{3}})$,解得$\frac{1+\frac{1}{3}a}{1-\frac{1}{3}}=2$,3+a=4,
∴a=1,
f(x)的解析式為:$f(x)=lo{g}_{2}(\frac{1+x}{1-x})$,定義域為(-1,1)
$f(-x)=lo{g}_{2}(\frac{1-x}{1+x})$=$-lo{g}_{2}(\frac{1+x}{1-x})=-f(x)$,可知函數(shù)是奇函數(shù);
(2)當(dāng)x∈[-1,0)時,3x∈$[\frac{1}{3},1)$;$f(x)=lo{g}_{2}(\frac{1+x}{1-x})$是增函數(shù),$lo{g}_{2}(\frac{1+\frac{1}{3}}{1-\frac{1}{3}})$=1,
f(3x)∈[1,+∞).
(3)$x∈[\frac{1}{2},\frac{2}{3}]$,函數(shù) f(x)的最大值:$f(\frac{2}{3})=lo{g}_{2}(\frac{1+\frac{1}{3}}{1-\frac{2}{3}})$=log25.
函數(shù)$g(x)={log_{\sqrt{2}}}\frac{k}{1-x}$,若存在$x∈[\frac{1}{2},\frac{2}{3}]$使不等式 f(x)>g(x)成立,
$g(x)=lo{g}_{\sqrt{2}}\frac{k}{1-x}$是增函數(shù),g(x)<$g(\frac{2}{3})=lo{g}_{\sqrt{2}}\frac{k}{1-\frac{2}{3}}$=$lo{g}_{\sqrt{2}}3k$
可得$lo{g}_{2}5>lo{g}_{\sqrt{2}}\frac{k}{1-x}$,$lo{g}_{2}5>lo{g}_{\sqrt{2}}(3k)$,
可得:0<k$<\frac{\sqrt{5}}{3}$.

點(diǎn)評 本題考查函數(shù)與方程的綜合應(yīng)用,函數(shù)的奇偶性以及函數(shù)的單調(diào)性,函數(shù)恒成立,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知關(guān)于x的方程($\frac{1}{2}$)x=$\frac{1}{1-a}$有一個正根,則實(shí)數(shù)a的取值范圍是a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.有下列命題:
①雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1與橢圓$\frac{x^2}{35}+{y^2}=1$有相同的焦點(diǎn);
②“$-\frac{1}{2}<x<0$”是“2x2-5x-3<0”的必要不充分條件;
③對于函數(shù)f(x)=x3-3x2,f(0)=0是極大值,f(2)=-4是極小值;
④?x∈R,x2-3x+3≠0.
其中真命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合M={y|y=2x,x<-1},P={y|y=log2x,x≥1},則M∩P=(  )
A.$\{y|0<y<\frac{1}{2}\}$B.{y|0<y<1}C.$\{y|\frac{1}{2}<y<1\}$D.$\{y|0≤y<\frac{1}{2}\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若f(x)=ax3+x+c在[a,b]上是奇函數(shù),則a+b+c+2的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞減的函數(shù)是( 。
A.y=x2+2B.y=|x|+1C.y=-|x|D.y=e|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)$f(x)=\left\{\begin{array}{l}cosπx(x<\frac{1}{2})\\ 2f(x-1)(x>\frac{1}{2})\end{array}\right.$,則$f(\frac{1}{3})+f(\frac{13}{6})$=$\frac{1}{2}+2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若n∈N*,則1+2+22+23+…+2n+1=( 。
A.A2n+1-1B.2n+2-1C.$\frac{(n+2)(1+{2}^{n+1})}{2}$D.$\frac{(n+1)(1+{2}^{n+1})}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,梯形ABCD中,AB∥CD,AD=BC=5,AB=10,CD=4,動點(diǎn)P自B點(diǎn)出發(fā)沿路線BC→CD→DA運(yùn)動,最后到達(dá)A點(diǎn)你的P的運(yùn)動路程為x,△ABP面積為y,試求y=f(x).

查看答案和解析>>

同步練習(xí)冊答案