【題目】已知函數(shù)的定義域?yàn)?/span>,且存在實(shí)常數(shù),使得對(duì)于定義域內(nèi)任意,都有成立,則稱(chēng)此函數(shù)具有“性質(zhì)”
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,則求出的值;若不具有“性質(zhì)”,請(qǐng)說(shuō)明理由;
(2)已知函數(shù)具有“性質(zhì)”且函數(shù)在上的最小值為;當(dāng)時(shí),,求函數(shù)在區(qū)間上的值域;
(3)已知函數(shù)既具有“性質(zhì)”,又具有“性質(zhì)”,且當(dāng)時(shí),,若函數(shù),在恰好存在個(gè)零點(diǎn),求的取值范圍.
【答案】(1)具有,;(2);(3)
【解析】
(1)假設(shè)函數(shù)具備性質(zhì),代入即可求出的值;
(2)根據(jù)題意可知,再根據(jù)函數(shù)的最小值即可求出值域;
(3)由題得且,作出圖象,即可求出的取值范圍.
解:(1)假設(shè)具有“性質(zhì)”,
則恒成立,
等式兩邊平方整理得,,因?yàn)榈仁胶愠闪ⅲ?/span>
所以,解得;
(2)函數(shù)具有“性質(zhì)”則
又當(dāng)時(shí),,在單調(diào)遞減
當(dāng)時(shí),得:,
又得
當(dāng)時(shí),,在單調(diào)遞增
函數(shù)的最小值,得:
當(dāng)時(shí),,單調(diào)遞減
此時(shí)的值域?yàn)椋?/span>
(3)既具有“性質(zhì)”,即,則函數(shù)為偶函數(shù),
又既具有“性質(zhì)”,即,
且當(dāng)時(shí),
作出函數(shù)的圖象如圖所示:
函數(shù),在恰好存在個(gè)零點(diǎn)
與在恰好有個(gè)交點(diǎn)
且
即的取值范圍為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)x>0時(shí),證明 ;
(2)當(dāng)x>-1且x≠0時(shí),不等式 恒成立,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:kx-y+1+2k=0(k∈R).
(1)證明:直線l過(guò)定點(diǎn);
(2)若直線不經(jīng)過(guò)第四象限,求k的取值范圍;
(3)若直線l交x軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S(O為坐標(biāo)原點(diǎn)),求S的最小值并求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),是兩條不同的直線,,是三個(gè)不同的平面,給出下列四個(gè)命題:(1)若,,那么;(2)若,,,那么;(3)若,,那么;(4)若,,則,其中正確命題的序號(hào)是( )
A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,橢圓C:的離心率是,拋物線E:的焦點(diǎn)F是C的一個(gè)頂點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是E上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線與C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過(guò)P且垂直于x軸的直線交于點(diǎn)M.
(i)求證:點(diǎn)M在定直線上;
(ii)直線與y軸交于點(diǎn)G,記的面積為,的面積為,求的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是( )
A. 甲的極差是29 B. 甲的中位數(shù)是24
C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,對(duì)于的一個(gè)子集,若存在不大于的正整數(shù),使得對(duì)中的任意一對(duì)元素、,都有,則稱(chēng)具有性質(zhì).
(1)當(dāng)時(shí),試判斷集合和是否具有性質(zhì)?并說(shuō)明理由;
(2)當(dāng)時(shí),若集合具有性質(zhì).
①那么集合是否一定具有性質(zhì)?并說(shuō)明理由;
②求集合中元素個(gè)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①越小,X與Y有關(guān)聯(lián)的可信度越小;②若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的值越接近于1;③“若,則類(lèi)比推出,“若,則;④命題“有些有理數(shù)是無(wú)限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無(wú)限循環(huán)小數(shù)”是假命題,推理錯(cuò)誤的原因是使用了“三段論”,推理形式錯(cuò)誤.其中說(shuō)法正確的有( )個(gè)
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的兩條對(duì)角線相交于點(diǎn), 邊所在直線的方程為,點(diǎn)在邊所在的直線上.
(Ⅰ)求邊所在直線的方程;
(Ⅱ)求矩形外接圓的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com