【題目】已知函數(shù)的定義域?yàn)?/span>,且存在實(shí)常數(shù),使得對(duì)于定義域內(nèi)任意,都有成立,則稱(chēng)此函數(shù)具有性質(zhì)

1)判斷函數(shù)是否具有性質(zhì),若具有性質(zhì),則求出的值;若不具有性質(zhì),請(qǐng)說(shuō)明理由;

2)已知函數(shù)具有性質(zhì)且函數(shù)上的最小值為;當(dāng)時(shí),,求函數(shù)在區(qū)間上的值域;

3)已知函數(shù)既具有性質(zhì),又具有性質(zhì),且當(dāng)時(shí),,若函數(shù),在恰好存在個(gè)零點(diǎn),求的取值范圍.

【答案】1)具有,;(2;(3

【解析】

1)假設(shè)函數(shù)具備性質(zhì),代入即可求出的值;

2)根據(jù)題意可知,再根據(jù)函數(shù)的最小值即可求出值域;

3)由題得,作出圖象,即可求出的取值范圍.

解:(1)假設(shè)具有性質(zhì),

恒成立,

等式兩邊平方整理得,,因?yàn)榈仁胶愠闪ⅲ?/span>

所以,解得

2函數(shù)具有性質(zhì)

當(dāng)時(shí),,在單調(diào)遞減

當(dāng)時(shí),得:,

當(dāng)時(shí),,在單調(diào)遞增

函數(shù)的最小值,得:

當(dāng)時(shí),,單調(diào)遞減

此時(shí)的值域?yàn)椋?/span>

3既具有性質(zhì),即,則函數(shù)為偶函數(shù),

既具有性質(zhì),即

且當(dāng)時(shí),

作出函數(shù)的圖象如圖所示:

函數(shù),在恰好存在個(gè)零點(diǎn)

恰好有個(gè)交點(diǎn)

的取值范圍為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)x>0時(shí),證明 ;

(2)當(dāng)x>-1且x0時(shí),不等式 恒成立,求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線lkxy12k0(kR).

(1)證明:直線l過(guò)定點(diǎn);

(2)若直線不經(jīng)過(guò)第四象限,求k的取值范圍;

(3)若直線lx軸負(fù)半軸于A,交y軸正半軸于B,△AOB的面積為S(O為坐標(biāo)原點(diǎn)),求S的最小值并求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是兩條不同的直線,,是三個(gè)不同的平面,給出下列四個(gè)命題:(1)若,,那么;(2)若,,,那么;(3)若,,那么;(4)若,,則,其中正確命題的序號(hào)是(

A.1)(2B.2)(3C.1)(3D.2)(4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,橢圓C的離心率是,拋物線E的焦點(diǎn)FC的一個(gè)頂點(diǎn).

)求橢圓C的方程;

)設(shè)PE上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線C交與不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D,直線OD與過(guò)P且垂直于x軸的直線交于點(diǎn)M

i)求證:點(diǎn)M在定直線上;

ii)直線y軸交于點(diǎn)G,記的面積為,的面積為,求的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè).命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤的一個(gè)是(  )

A. 甲的極差是29 B. 甲的中位數(shù)是24

C. 甲罰球命中率比乙高 D. 乙的眾數(shù)是21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,對(duì)于的一個(gè)子集,若存在不大于的正整數(shù),使得對(duì)中的任意一對(duì)元素、,都有,則稱(chēng)具有性質(zhì).

1)當(dāng)時(shí),試判斷集合是否具有性質(zhì)?并說(shuō)明理由;

2)當(dāng)時(shí),若集合具有性質(zhì).

①那么集合是否一定具有性質(zhì)?并說(shuō)明理由;

②求集合中元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①越小,XY有關(guān)聯(lián)的可信度越小;②若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r的值越接近于1;“若,則類(lèi)比推出,“若,則;④命題“有些有理數(shù)是無(wú)限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無(wú)限循環(huán)小數(shù)”是假命題,推理錯(cuò)誤的原因是使用了“三段論”,推理形式錯(cuò)誤.其中說(shuō)法正確的有( )個(gè)

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的兩條對(duì)角線相交于點(diǎn), 邊所在直線的方程為,點(diǎn)邊所在的直線上.

(Ⅰ)求邊所在直線的方程;

(Ⅱ)求矩形外接圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案