經(jīng)過點P(0,-1)作直線l,若直線l與連接A(1,-2)、B(2,1)的線段總有公共點,則直線l的斜率k的取值范圍是
 
考點:直線的斜率
專題:直線與圓
分析:由于直線l與連接A(1,-2)、B(2,1)的線段總有公共點,可得kPA≤kl≤kPB,再利用斜率計算公式即可得出.
解答: 解:kPA=
-2-(-1)
1-0
=-1,kPB=
-1-1
0-2
=1.
∵直線l與連接A(1,-2)、B(2,1)的線段總有公共點,
∴kPA≤kl≤kPB
∴-1≤k≤1.
∴直線l的斜率k的取值范圍是[-1,1].
故答案為:[-1,1].
點評:本題考查了直線相交問題、斜率計算公式,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2+bx,a≠0.
(1)若b=2,且函數(shù)h(x)=f(x)-g(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(2)當a=3,b=2時,求函數(shù)h(x)=f(x)-g(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點作圓x2+y2=a2的兩條切線,切點分別為A、B,若∠AOB=90°(O是坐標原點),則雙曲線C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i為虛數(shù)單位,復數(shù)
2
1-i
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記定義在R上的函數(shù)y=f(x)的導函數(shù)為f′(x).如果存在x0∈[a,b],使得f(b)-f(a)=f′(x0)(b-a)成立,則稱x0為函數(shù)y=f(x)的“中值點”.那么函數(shù)f(x)=x3+2x2在區(qū)間[-2,2]上的“中值點”為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用反證法證明:若a,b,c均為實數(shù),且a=x2-2y+
π
2
,b=y2-2z+
π
3
,c=z2-2x+
π
6
,求證:a,b,c中至少有一個大于0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列等式
1=1
2+3+4=9
3+4+5+6+7=25
4+5+6+7+8+9+10=49

照此規(guī)律,第7個等式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡
2-sin22+cos4
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x
-x(x≥1)的值域為
 

查看答案和解析>>

同步練習冊答案